P. Baraldi, R. Razavi-far, and E. Zio, A method for estimating the confidence in the identification of nuclear transients by a bagged ensemble of FCM classifiers, 7th international topical meeting on nuclear plant instrumentation, control, and human-machine interface technologies (NPIC&HMIT), pp.283-293, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00721035

P. Baraldi, R. Razavi-far, and E. Zio, Bagged ensemble of Fuzzy C-Means classifiers for nuclear transient identification, Annals of Nuclear Energy, vol.38, issue.5, pp.1161-1171, 2011.
DOI : 10.1016/j.anucene.2010.12.009

URL : https://hal.archives-ouvertes.fr/hal-00609529

P. Baraldi, R. Razavi-far, and E. Zio, Classifier-ensemble incremental-learning procedure for nuclear transient identification at different operational conditions, Reliability Engineering & System Safety, vol.96, issue.4, pp.480-488, 2011.
DOI : 10.1016/j.ress.2010.11.005

URL : https://hal.archives-ouvertes.fr/hal-00609522

M. Bartlett, TESTS OF SIGNIFICANCE IN FACTOR ANALYSIS, British Journal of Statistical Psychology, vol.3, issue.2, pp.77-85, 1950.
DOI : 10.1111/j.2044-8317.1950.tb00285.x

B. Boulkroune, M. Galvez-carrillo, and M. Kinnaert, Robust sensor fault detection and isolation for a doubly-fed induction generator, 50th IEEE Conference on Decision and Control, pp.1600-1606, 2010.

R. Bro, K. Kjeldahl, A. Smilde, and H. Kiers, Cross-validation of component models: A critical look at current methods, Analytical and Bioanalytical Chemistry, vol.55, issue.5, pp.1241-1251, 2008.
DOI : 10.1007/s00216-007-1790-1

C. Bruzzese, Diagnosis of eccentric rotor in synchronous machines by analysis of split-phase currents; part II: Experimental analysis. Industrial Electronics, IEEE Transactions, pp.61-4206, 2014.

R. Cattel, The Scree Test For The Number Of Factors, Multivariate Behavioral Research, vol.1, issue.2, pp.245-276, 1996.
DOI : 10.1207/s15327906mbr0102_10

G. Diana and C. Tommasi, Cross-validation methods in principal component analysis: A comparison, Statistical Methods & Applications, vol.20, issue.1, pp.71-82, 2002.
DOI : 10.1007/BF02511446

H. Eastment and W. Krzanowski, Cross-Validatory Choice of the Number of Components From a Principal Component Analysis, Technometrics, vol.80, issue.1, pp.73-77, 1982.
DOI : 10.1080/00401706.1982.10487712

M. Forina, S. Lanteri, R. Boggia, and E. Bertran, Double cross full validation, Quimica Analitica, vol.12, pp.128-135, 1993.

M. Galvez-carrillo and M. Kinnaert, Sensor fault detection and isolation in three-phase systems using a signal-based approach, IET Control Theory & Applications, vol.4, issue.9, pp.1838-1848, 2010.
DOI : 10.1049/iet-cta.2009.0536

P. Geladi and B. R. Kowalski, Partial least-squares regression: a tutorial, Analytica Chimica Acta, vol.185, pp.1-17, 1986.
DOI : 10.1016/0003-2670(86)80028-9

I. A. Gheyas and L. S. Smith, A neural network-based framework for the reconstruction of incomplete data sets, Neurocomputing, vol.73, issue.16-18, pp.3039-3065, 2010.
DOI : 10.1016/j.neucom.2010.06.021

B. Grung and R. Manne, Missing values in principal component analysis, Chemometrics and Intelligent Laboratory Systems, vol.42, issue.1-2, pp.125-139, 1998.
DOI : 10.1016/S0169-7439(98)00031-8

I. Guyon and A. Elisseeff, An introduction to variable and feature selection, Journal of Machine Learning Research, vol.3, pp.1157-1182, 2003.

A. Hansen and G. Michalke, Fault ride-through capability of DFIG wind turbines, Renewable Energy, vol.32, issue.9, pp.1594-1610, 2007.
DOI : 10.1016/j.renene.2006.10.008

J. Jackson, A user's guide to principal components, 1991.
DOI : 10.1002/0471725331

I. Jolliffe, Principal component analysis, 1986.
DOI : 10.1007/978-1-4757-1904-8

H. Kaiser, The Application of Electronic Computers to Factor Analysis, Educational and Psychological Measurement, vol.20, issue.1, pp.141-151, 1960.
DOI : 10.1177/001316446002000116

T. Kourti and J. F. Macgregor, Multivariate SPC methods for process and product monitoring, Journal of Quality Technology, vol.28, pp.409-428, 1996.

W. Krzanowski, Cross-validatory choice in principal component analysis; some sampling results, Journal of Statistical Computation and Simulation, vol.20, issue.4, pp.299-314, 1983.
DOI : 10.1080/00949658308810706

W. Krzanowski, Cross-Validation in Principal Component Analysis, Biometrics, vol.43, issue.3, pp.575-584, 1987.
DOI : 10.2307/2531996

E. Malinowski, Theory of error in factor analysis, Analytical Chemistry, vol.49, issue.4, pp.606-612, 1977.
DOI : 10.1021/ac50012a026

M. Muhlbaier, A. Topalis, and R. Polikar, Learn<formula formulatype="inline"><tex Notation="TeX">$^{++}$</tex> </formula>.NC: Combining Ensemble of Classifiers With Dynamically Weighted Consult-and-Vote for Efficient Incremental Learning of New Classes, IEEE Transactions on Neural Networks, vol.20, issue.1, pp.152-168, 2009.
DOI : 10.1109/TNN.2008.2008326

P. Nelson, P. Taylor, and J. Macgregor, Missing data methods in PCA and PLS: Score calculations with incomplete observations, Chemometrics and Intelligent Laboratory Systems, vol.35, issue.1, pp.45-65, 1996.
DOI : 10.1016/S0169-7439(96)00007-X

S. Rassler, D. B. Rubin, and E. R. Zell, Imputation, Wiley Interdisciplinary Reviews: Computational Statistics, vol.72, issue.1, pp.20-29, 2013.
DOI : 10.1002/wics.1240

R. Razavi-far, P. Baraldi, and E. Zio, Dynamic Weighting Ensembles for Incremental Learning and Diagnosing New Concept Class Faults in Nuclear Power Systems, IEEE Transactions on Nuclear Science, vol.59, issue.5, pp.2520-2530, 2012.
DOI : 10.1109/TNS.2012.2209125

URL : https://hal.archives-ouvertes.fr/hal-00777671

R. Razavi-far, P. Baraldi, and E. Zio, ENSEMBLE OF NEURAL NETWORKS FOR DETECTION AND CLASSIFICATION OF FAULTS IN NUCLEAR POWER SYSTEMS, World Scientific Proceedings Series on Computer Engineering and Information Science 7; Uncertainty Modeling in Knowledge Engineering and Decision Making -Proceedings of the 10th International FLINS Conference, pp.1202-1207, 2012.
DOI : 10.1142/9789814417747_0193

URL : https://hal.archives-ouvertes.fr/hal-00777612

R. Razavi-far, H. Davilu, V. Palade, and C. Lucas, Model-based fault detection and isolation of a steam generator using neuro-fuzzy networks, Neurocomputing, vol.72, issue.13-15, pp.2939-2951, 2009.
DOI : 10.1016/j.neucom.2009.04.004

R. Razavi-far, H. Davilu, V. Palade, and C. Lucas, NEURO-FUZZY BASED FAULT DIAGNOSIS OF A STEAM GENERATOR, 7th IFAC Conference on Fault Detection , Supervision and Safety of Technical Processes, pp.1180-1185, 2009.
DOI : 10.3182/20090630-4-ES-2003.00193

R. Razavi-far and M. Kinnaert, Incremental Design of a Decision System for Residual Evaluation: a Wind Turbine Application*, 8th IFAC Conference Fault Detection, Supervision and Safety of Technical Processes, pp.343-348, 2012.
DOI : 10.3182/20120829-3-MX-2028.00127

R. Razavi-far and M. Kinnaert, A multiple observers and dynamic weighting ensembles scheme for diagnosing new class faults in wind turbines, Control Engineering Practice, vol.21, issue.9, pp.1165-1177, 2013.
DOI : 10.1016/j.conengprac.2013.05.005

J. Ribrant and L. Bertling, Survey of failures in wind power systems with focus on swedish wind power plants during 1997-2005, IEEE Power Engineering Society General Meeting, 2007.

D. Rubin, Inference and missing data, Biometrika, vol.63, issue.3, pp.581-592, 1976.
DOI : 10.1093/biomet/63.3.581

P. Shaw, Multivariate statistics for the Environmental Sciences, 2003.

C. Vong and P. Wong, Engine ignition signal diagnosis with Wavelet Packet Transform and Multi-class Least Squares Support Vector Machines, Expert Systems with Applications, vol.38, issue.7, pp.8563-8570, 2011.
DOI : 10.1016/j.eswa.2011.01.058

C. Vong, P. Wong, and W. Ip, A New Framework of Simultaneous-Fault Diagnosis Using Pairwise Probabilistic Multi-Label Classification for Time-Dependent Patterns, IEEE Transactions on Industrial Electronics, vol.60, issue.8, pp.3372-3385, 2013.
DOI : 10.1109/TIE.2012.2202358

H. Wold, Estimation of principal components and related models by iterative least squares, Multivariate Analysis, 1966.

S. Wold, Pattern recognition by means of disjoint principal components models, Pattern Recognition, vol.8, issue.3, pp.127-139, 1976.
DOI : 10.1016/0031-3203(76)90014-5

S. Wold, Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models, Technometrics, vol.35, issue.4, pp.397-405, 1978.
DOI : 10.1016/S0021-9673(01)85348-6

S. Wold, K. Esbensen, and P. Geladi, Principal component analysis, Chemometrics and Intelligent Laboratory Systems, vol.2, issue.1-3, pp.37-52, 1987.
DOI : 10.1016/0169-7439(87)80084-9