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Abstract. This paper addresses the problem of batch Reinforcement
Learning with Expert Demonstrations (RLED). In RLED, the goal is
to find an optimal policy of a Markov Decision Process (MDP), using a
data set of fixed sampled transitions of the MDP as well as a data set of
fixed expert demonstrations. This is slightly different from the batch Re-
inforcement Learning (RL) framework where only fixed sampled transi-
tions of the MDP are available. Thus, the aim of this article is to propose
algorithms that leverage those expert data. The idea proposed here dif-
fers from the Approximate Dynamic Programming methods in the sense
that we minimize the Optimal Bellman Residual (OBR), where the min-
imization is guided by constraints defined by the expert demonstrations.
This choice is motivated by the the fact that controlling the OBR im-
plies controlling the distance between the estimated and optimal quality
functions. However, this method presents some difficulties as the criterion
to minimize is non-convex, non-differentiable and biased. Those difficul-
ties are overcome via the embedding of distributions in a Reproducing
Kernel Hilbert Space (RKHS) and a boosting technique which allows ob-
taining non-parametric algorithms. Finally, our algorithms are compared
to the only state of the art algorithm, Approximate Policy Iteration with
Demonstrations (APID) algorithm, in different experimental settings.

1 Introduction

This paper addresses the problem of batch Reinforcement Learning with Expert
Demonstrations (RLED) where the aim is to find an optimal policy of a Markov
Decision Process (MDP) only known through fixed sampled transitions, when
expert demonstrations are also provided. Thus, RLED can be seen as a com-
bination of two classical frameworks, Learning from Demonstrations (LfD) and
batch Reinforcement Learning (RL). The LfD framework is a practical paradigm
for learning from expert trajectories. A classical approach to LfD is to generalize
the mapping between states and actions observed in the expert data. This can
be done by a Supervised Learning method such as a multi-class classification
algorithm [19]. However, those methods do not generalize well to regions of the
state space that are not observed in the expert data, because they do not take



into account the underlying dynamics of the MDP. To alleviate this, some recent
methods [11,21] focus on querying the expert in some appropriate regions of the
state space to improve the learning. However, this implies that the expert stays
with the learning agent throughout the training process, which can reduce sig-
nificantly the applicability of the technique. Therefore, the idea presented in [12]
to overcome the limitation of conventional LfD methods is to use techniques
from the batch Reinforcement Learning (RL) paradigm and combine them with
LfD techniques. In batch Reinforcement Learning (RL), the goal is the same as
in RLED, but without expert data. Usual techniques of batch RL have some
difficulties to achieve good results from relatively little data. However, if some
expert demonstrations are added to the set of sampled transitions, it is possible
to improve significantly the results of the method [12]. Thus, a combination of
expert data and non expert data offers the possibility to address the problem of
learning optimal policies under realistic assumptions.

At our knowledge, there is only one algorithm taking into account expert
data in order to find an optimal policy. This approach is Approximate Policy It-
eration with Demonstrations (APID) [12], which consists in using expert demon-
strations to define linear constraints that guide the optimization performed by
Approximate Policy Iteration (API), a classical framework in RL. The practical
algorithm APID is inspired by Least Squares Temporal Differences (LSTD) [6],
where the choice of features is a key problem as it is a parametric method. Even if
the optimization could be done in a Reproducing Kernel Hilbert Space (RKHS),
which provides the flexibility of working with a non-parametric representation
as claimed by [12], the choice of the kernel can be as difficult as the choice of
the features. Therefore, we propose a method with no features choice in order
to solve the RLED problem. Our method consists in the minimization of the
norm of the Optimal Bellman Residual (OBR), guided by constraints defined
by the expert demonstrations (see Sec 2.1). This minimization is motivated by
the fact that if one is able to find a function with a small OBR, then this func-
tion is close to the optimal quality function. However, as far as we know, this
technique is not used in RL for three reasons. First, the empirical norm of the
OBR is biased. Second, it is not convex, so the minimization could lead to local
minima. Third, it is not differentiable. Our contribution is to show how we can
construct an empirical norm of the OBR which is not biased via the embedding
of distributions in an RKHS (see Sec. 4.1) and how it is possible to minimize
this non-convex and non-differentiable criterion via a boosting technique (see
Sec. 4.2). In addition, boosting techniques are non-parametric methods which
avoid choosing features.

In the proposed experiments (see Sec. 5), we compare our algorithms to the
only state of the art algorithm APID, to an RL algorithm Least Square Policy
Iteration (LSPI) [14], and to an LfD algorithm [19]. The first experiment is
conducted on a generic task (randomly generated MDP called Garnet [3]) where
expert demonstrations and non-expert transitions are provided and the aim is
to find an optimal policy. The second experiment is realized on a classical LfD
benchmark, the Highway problem.



2 Background and Notations

Let (R, |.|) be the real space with its canonical norm and X a finite set, RX is
the set of functions from X to R. The set of probability distributions over X is
noted ∆X . Let Y be a finite set, ∆Y

X is the set of functions from Y to ∆X . Let
α ∈ R

X , p ∈ R
∗
+ and ν ∈ ∆X , we define the Lp,ν-norm of α, noted ‖α‖p,ν , by:

‖α‖p,ν = (
∑

x∈X ν(x)|α(x)|p)
1

p . In addition, the infinite norm is noted ‖α‖∞ and
defined as ‖α‖∞ = maxx∈X |α(x)|. Let x ∈ X, x ∼ ν means that x is sampled
according to ν and Eν [α] =

∑

x∈X ν(x)α(x) is the expectation of α under ν.
Finally, δx ∈ R

X is the function such that ∀y ∈ X, if y 6= x then δx(y) =
0, else δx(y) = 1.

2.1 MDP, RL and RLED

In this section, we provide a very brief summary of some of the concepts and
definitions from the theory of MDP and RL. For further information about
MDP, the reader can be referred to [18]. Here, the agent is supposed to act
in a finite MDP 4. An MDP models the interactions of an agent evolving in a
dynamic environment and is represented by a tuple M = {S,A,R, P, γ} where
S = {si}1≤i≤NS

is the state space, A = {ai}1≤i≤NA
is the action space, R ∈

R
S×A is the reward function, γ ∈]0, 1[ is a discount factor and P ∈ ∆S×A

S

is the Markovian dynamics which gives the probability, P (s′|s, a), to reach s′

by choosing the action a in the state s. A policy π is an element of AS and
defines the behavior of an agent. In order to quantify the quality of a policy π

relatively to the reward R, we define the quality function. For a given MDP M

and a given policy π, the quality function Qπ ∈ R
S×A is defined as Qπ(s, a) =

E
π
s,a[

∑+∞
t=0 γ

tR(st, at)], where E
π
s,a is the expectation over the distribution of the

admissible trajectories (s0, a0, s1, π(s1), . . . ) obtained by executing the policy π

starting from s0 = s and a0 = a. Moreover, the function Q∗ ∈ R
S×A defined

as: Q∗ = maxπ∈AS Qπ is called the optimal quality function. A policy π which
has the following property: ∀s ∈ S, π(s) ∈ argmaxa∈A Q∗(s, a) is said optimal
with respect to R. Thus, it is quite easy to construct an optimal policy via
the knowledge of the optimal quality function. For ease of writing, for each Q

and each π, we define f∗
Q ∈ R

S such that ∀s ∈ S, f∗
Q(s) = maxa∈A Q(s, a) and

fπ
Q ∈ R

S such that ∀s ∈ S, fπ
Q(s) = Q(s, π(s)). Qπ and Q∗ are fixed points of

the two following contracting operators Tπ and T ∗ for the infinite norm:

∀Q ∈ R
S×A, ∀(s, a) ∈ S ×A, TπQ(s, a) = R(s, a) + γEP (.|s,a)[f

π
Q],

∀Q ∈ R
S×A, ∀(s, a) ∈ S ×A, T ∗Q(s, a) = R(s, a) + γEP (.|s,a)[f

∗
Q].

The aim of Dynamic Programming (DP) is, given an MDP M , to find Q∗ which
is equivalent to minimizing a certain norm of the OBR defined as T ∗Q−Q:

JDP (Q) = ‖T ∗Q−Q‖,

4 This work could be easily extended to measurable state spaces as in [9,12]; we choose
the finite case for the ease and clarity of exposition.



where ‖.‖ is a norm which can be equal to ‖.‖∞ or ‖.‖ν,p, ν ∈ ∆S×A is such that
∀(s, a) ∈ S × A, ν(s, a) > 0 and p ∈ R

∗
+. Usual techniques of DP, such as Value

Iteration (VI) or Policy Iteration (PI), do not directly minimize the criterion
JDP (Q) but uses particular properties of the operators Tπ and T ∗ to obtain Q∗.
However, the motivation to minimize the norm of the OBR is clear as:

‖Q∗ −Q‖ ≤
C

1− γ
‖T ∗Q−Q‖,

where C ∈ R
∗ is a constant depending notably on the MDP (for details see the

work of [16]). This means that if we are able to control the norm of the OBR,
then we have found a function Q close to Q∗, which is the goal of DP.

Batch RL aims at estimating Q∗ or finding an optimal policy when the model
(the dynamics P and the reward function R) of the MDP M is known only
through the RL data set noted DRL which contains NRL sampled transitions of
the type (si, ai, ri, s

′
i) where si ∈ S, ai ∈ A, ri = R(si, ai) and s′i ∼ P (.|si, ai):

DRL = (si, ai, ri, s
′
i)1≤i≤NRL

. For the moment no assumption is made on the
distribution νRL ∈ ∆S×A from which the data are drawn, (si, ai) ∼ νRL. In batch
RLED, we suppose that we also have the expert data set DE which contains NE

expert state-action couples of the the type (sj , πE(sj)) where sj ∈ S and πE is an
expert policy which can be considered optimal or near-optimal: DE = (sj , aj =
πE(sj))1≤j≤NE

. The distribution from which the expert data are drawn is noted
νE ∈ ∆S , sj ∼ νE .

3 A new algorithm for the RLED problem

Our problem consists in approximating Q∗. We saw in Sec. 2.1 that minimizing
a certain norm of the OBR can lead us to a good approximation of the optimal
quality function and of the optimal policy. However, the only available knowledge
of the MDP lies in the sets of data DRL and DE . Thus for the set DRL, we want
to find a function Q ∈ R

S×A that minimizes the empirical OBR:

JRL(Q) =
1

NRL

NRL
∑

i=1

|T ∗Q(si, ai)−Q(si, ai)|
p =

def

‖T ∗Q−Q‖pDRL,p,

where p ≥ 1. For the expert set DE , we would like to express that the action aj
is optimal, which means that Q(sj , aj) is greater than Q(sj , a) where a ∈ A\aj .
This can be expressed by the following large margin constraints:

∀1 ≤ j ≤ NE , max
a∈A

[Q(sj , a) + l(sj , aj , a)]−Q(sj , aj) ≤ 0,

where l ∈ R
S×A×A
+ is a margin function such that ∀1 ≤ j ≤ NE , ∀a ∈ A\aj ,

l(sj , aj , a) > l(sj , aj , aj). A canonical choice of margin function is ∀1 ≤ j ≤ NE ,
∀a ∈ A\aj , l(sj , aj , aj) = 0, l(sj , aj , a) = 1. This imposes that the function
Q we are looking for is greater by a given amount determined by the margin
function for the expert actions. If available, one prior knowledge can be used



to structure the margin. Those constraints guide the minimization of JRL as
they impose a particular structure for the quality function we are looking for.
Here, it is important to note that the constraints that guide the minimization
of JRL are compatible with this minimization as they are satisfied by the expert
policy which is near optimal. Thus, we can think that those constraints help to
accelerate and improve the minimization of JRL.

However, notice that it is not the case if we use Tπ in lieu of T ∗, because the
policy π can be completely different from the expert policy. This is a problem
encountered in the APID algorithm, as they choose a Policy Iteration framework
where there are several steps of the minimization of the norm of the Bellman
Residual ‖TπQ−Q‖ guided by constraints on expert data (see Sec. 3.1).

As the expert policy might be suboptimal, the constraints can be violated by
an optimal policy, that is why we smooth those constraints with slack variables:

∀1 ≤ j ≤ NE , max
a∈A

[Q(sj , a) + l(sj , aj , a)]−Q(sj , aj) ≤ ξj ,

where ξj is a positive slack variable that must be the smallest possible. So the
idea is to minimize:

JRL(Q) +
λ

NE

NE
∑

j=1

ξj ,

subject to max
a∈A

[Q(sj , a) + l(sj , aj , a)]−Q(sj , aj) ≤ ξj , ∀1 ≤ j ≤ NE .

where λ determines the importance between the RL data and the expert data.
Following [20], as the slack variables are tight and positive, this problem is

equivalent to minimizing:

JRLE(Q) = JRL(Q) + λJE(Q),

where: JE(Q) = 1
NE

∑NE

j=1 maxa∈A[Q(sj , a) + l(sj , aj , a)]−Q(sj , aj). The mini-
mization of the criterion JE(Q) is known in the literature and used in the LfD
paradigm [19,13,17]. The minimization of JE(Q) can be seen as a score-based
multi-class classification algorithm where the states sj play the role of inputs
and the actions aj play the role of labels.

3.1 Comparaison to the APID method

The APID method is couched in the API framework [5], which starts with an
initial policy π0. At the k+1-th iteration, given a policy πk, the quality function
Qπk is approximately evaluated by Q̂k. This step is called the approximate policy
evaluation step. Then, a new policy πk+1 is computed, which is greedy with
respect to Q̂k. In the APID algorithm, the policy evaluation step is realized by
the following unconstrained minimization problem:

Q̂k = argmin
Q∈RS×A

Jπ
RL(Q) + λJE(Q), (1)



where: Jπ
RL(Q) = 1

NRL

∑NRL

i=1 |TπQ(si, ai)−Q(si, ai)|
p =

def

‖TπQ−Q‖pDRL,p. The

difference between JRL(Q) and Jπ
RL(Q) is the use of the operator T ∗ in lieu of

Tπ. In the APID method, the policy evaluation step is slightly different from
a classical API method which consists in the minimization of Jπ

RL(Q). This
introduces an error in the evaluation step for the first iterations of the APID
method, which can potentially slow down the learning process. Moreover, as
the APID is an iterative method, the unconstrained problem Eq. (1) has to
be resolved several times which can be time expensive. However, this problem is
convex and easier to resolve than the minimization of JRLE . In practice, in order
to resolve the problem in Eq. (1), an LSTD-like algorithm [12] is used (this is
the algorithm implemented in our experiments in order to represent the APID
method). This method is by nature parametric and needs the choice of features
or the choice of a kernel. Thus, the APID has as advantage the simplicity of
minimizing Jπ

RL(Q) + λJE(Q), which is convex, but has also some drawbacks as
it is an iterative and parametric method.

Our algorithm, which consists in the minimization of JRLE(Q) = JRL(Q) +
λJE(Q), avoids the APID drawbacks as it can be in practice a non parametric
and non iterative method (see Sec. 4) but it is a non-convex criterion. Indeed, let
us take a closer look at JRL(Q) = ‖T ∗Q−Q‖pDRL,p. This criterion is an empirical
norm of the OBR, and the minimization of this criterion for solving the batch
RL problem is an unused technique at our knowledge. There are several reasons
to understand why the OBR minimization (OBRM) is usually not used. The
first one is that this criterion is not convex in Q, so a direct minimization could
lead us to local minima. The second reason is that this criterion is not differen-
tiable because of the max operator, so we need to use sub-gradient techniques
or generalized gradient techniques to minimize it. The third reason is that this
technique is not directly inspired by a dynamic programming approach such as
PI or VI.

In the next section, we exhibit the bias problem involved by JRL. However,
it is possible to construct two criterions ĴRL, which is a biased criterion but
can be used in some specific conditions, and JRL which converges in probability
to ‖T ∗Q − Q‖2ν,2 when NRL tends to infinity and ν is the distribution from

which the data are drawn. JRL is obtained thanks to the use of a distribution
embedding in an RKHS. Finally, we show how we overcome the non-convex and
non-differentiability difficulties via a boosting technique which allows obtaining
non-parametric algorithms.

4 Practical Minimization of JRLE

In this section, we present how the criterion JRLE is minimized in order to
obtain a practical and non-parametric algorithm. Here, we choose p = 2 and we
suppose that the data (si, ai) are drawn identically and independently (i.i.d) from
a distribution ν ∈ ∆S×A such that ∀(s, a), ν(s, a) > 0. The i.i.d assumption is
only done here to simplify the analysis. Indeed, this assumption could be relaxed



using techniques that handle dependent data [25]. The i.i.d assumption for the
data set DRL in a batch RL setting is common in the literature [14,15,12].

First, let us take a closer look to the term JRL(Q) = ‖T ∗Q − Q‖2DRL,2.
If we only have the knowledge of the data set DRL, we cannot compute
T ∗Q(si, ai), but we can compute an unbiased estimate T̂ ∗Q(si, ai) = R(si, ai)+
γmaxa∈A Q(s′i, a). Then, our criterion becomes:

ĴRL(Q) =
1

NRL

NRL
∑

i=1

|T̂ ∗Q(si, ai)−Q(si, ai)|
2 =

def

‖T̂ ∗Q−Q‖2DRL,2.

Unfortunately, this is a biased criterion. However, we have the following result:

Theorem 1.

ĴRL(Q) →
NRL→∞

‖T ∗
Q−Q‖2ν,2 + γ

2
∑

(s,a)∈S×A

ν(s, a)EP (.|s,a)[(f
∗
Q)

2 −EP (.|s,a)[|f
∗
Q|]

2].

Proof. The proof follows the same line as the one of [2], where T ∗ replaces Tπ.

So, when the number of samples tends to infinity, the criterion ĴRL(Q) tends
to ‖T ∗Q − Q‖2ν,2, which is what we want to minimize plus a term of variance
γ2

∑

(s,a)∈S×A ν(s, a)EP (.|s,a)[(f
∗
Q)

2 −EP (.|s,a)[|f
∗
Q|]

2]. This term will favor func-
tions which are smooth, but it is not controlled by a factor that we can choose
such as in regularization theory. As pointed by [2], we have the same prob-
lem in the minimization of the Bellman residual in the PI framework. It is
not satisfactory to present a criterion which has a bias even if it can work in
some specific conditions such as when the MDP is deterministic (in that case
ĴRL(Q) →

NRL→∞
‖T ∗Q − Q‖2ν,2) or when the optimal action value function we

are looking for is really smooth.
Thus, we also propose a criterion which does not have this bias. Several

techniques have been used to get rid off the bias in the minimization of the
Bellman Residual (see [2]), but here we are going to use the work developed
by [15] where a conditional distribution is embbeded in a Reproducing Kernel
Hilbert Space (RKHS), more appropriate for the considered batch setting.

4.1 RKHS embbedings for MDP

Let us start with some notations relative to RKHS [4]. Let K be a positive
definite kernel on a finite set X. The unique Hilbert space H with reproducing
kernel K is denoted by HK . Correspondingly the norm will be denoted by ‖.‖K
and the inner product will be denoted by 〈., .〉K .

Now, we can use the notion of distribution embeddings [23,15]. Given any
probability distribution P ∈ ∆X and a positive definite kernel K on X, a distri-
bution embbeding of P in HK is an element ν ∈ HK such that:

∀h ∈ HK , 〈ν, h〉K = EP [h].



In our application, we want to find a distribution embbeding for the condi-
tional distribution P (.|s, a). Following the work done by [15], given the data set
DRL, a positive definite kernel K on S×A, a positive definite kernel L on S, there
is a way to estimate the element νs,a ∈ HL such that 〈νs,a, f〉K = EP (.|s,a)[f ],
for all f ∈ HL. The estimation of νs,a is noted νs,a and is such that:

νs,a =

NRL
∑

i=1

βi(s, a)L(s
′
i, .) ∈ HL,

where βi(s, a) =
∑NRL

j=1 WijK((sj , aj), (s, a)), and where W = (Wij)1≤i,j≤NRL
=

(K+λKNRLI)
−1 with K = (K((si, ai), (sj , aj)))1≤i,j≤NRL

, I the identity matrix
of size NRL and λK ∈ R+. In the case where S is finite, we can choose L to be the
canonical dot product and in that case, we have HL = R

S and ∀Q ∈ S× A, f∗
Q ∈

HL. However if S is a measurable state space, the choice of L is not canonical.
Thus, if f∗

Q ∈ HL (which is the case when S is finite and L is the euclidian dot

product) and if we define T
∗
Q(si, ai) = R(si, ai)+γ

∑NRL

j=1 βj(si, ai)maxa∈A Q(s′j , a),

we have that: T
∗
Q(si, ai) = R(si, ai)+ 〈νsi,ai

, f∗
Q〉. So, if we define the following

criterion:

JRL(Q) =
1

NRL

NRL
∑

i=1

|T
∗
Q(si, ai)−Q(si, ai)|

2 =
def

‖T
∗
Q−Q‖2DRL,2,

we have the following Theorem:

Theorem 2. Under some smoothness conditions of the MDP described in [15],
the strict positivity of the Kernel L and by choosing λK →

NRL→∞
0 and

λKN3
RL →

NRL→∞
∞, we have if ‖f∗

Q‖L < ∞ :

JRL(Q)
ν
→

NRL→∞
‖T ∗Q−Q‖2ν,2.

Here, the convergence is in ν-Probability.

Proof. This comes directly from the Cauchy-Schwartz inequality and the Lemma
2.1 in [15].

sup
(s,a)∈S×A

‖νs,a − νs,a‖L
ν
→

NRL→∞
0.

It is important to remark that we only need the coefficients of the form
(βj(si, ai))1≤i,j≤NRL

in order to construct JRL(Q). Thus we only need to
compute the matrix product B = (Bij)1≤i,j≤NRL

= WK because Bij =
∑NRL

k=1 WikK((sk, ak), (sj , aj)) = βi(sj , aj). Finally, we can easily construct

two criterions from the data set DRL. One criterion, ĴRL(Q), is naturally bi-
ased and the other one, JRL(Q), converges in probability towards ‖T ∗Q −
Q‖2ν,2, with certain conditions of smoothness of the MDP. Those two cri-

terions can take the same form if we rewrite T̂ ∗Q(si, ai) = R(si, ai) +



γ
∑NRL

j=1 β̂j(si, ai)maxa∈A Q(s′j , a) with β̂(si, ai)j = 1 if j = i and β̂j(si, ai) = 0
otherwise. Thus the practical algorithms will consists in minimizing the two
following criterions:

ĴRLE(Q) = ĴRL + λJE(Q),

JRLE(Q) = JRL + λJE(Q).

In order to realize it, we use a boosting technique.

4.2 Boosting

A boosting method is an interesting optimization technique: it minimizes di-
rectly the criterion without the step of choosing features, which is one of the
major drawback of several RL methods. As presented by [10], a boosting algo-
rithm is a projected sub-gradient descent [22] of a convex functional in a specific
functions space (here R

S×A) which has to be a Hilbert space. The principle is to
minimize a convex functional F ∈ R

H where H is a Hilbert space: minh∈H F (h).
This technique can be extended to non-smooth and non-convex functionals, yet
the functional has to be Lipschitz in order to guarantee that the gradient of the
functional exists almost everywhere [8]. For a Lipschitz and non smooth func-
tional, the gradient can be calculated almost everywhere and if not the notion
of generalized gradient is used (see [8] for details). To realize this minimization,
we need to calculate the gradient ∂hF ∈ H and define K ⊂ H, a set of allow-
able directions (also called the restriction set) where the gradient is projected.
Boosting algorithms use a projection step when optimizing over function space
because the functions representing the gradient are often computationally dif-
ficult to manipulate and do not generalize well to new inputs [10]. In boosting
literature, the restriction set corresponds directly to the set of hypotheses gen-
erated by a weak learner. The nearest direction k∗, which is the projection of
the gradient ∂hF , is defined by:

k∗ = argmax
k∈K

〈k, ∂hF 〉

‖k‖
,

where 〈., .〉 is the inner product associated to the Hilbert space H and ‖.‖ is
the associated canonical norm. Then, the naive algorithm to realize the mini-
mization of F is given by Algo. 1. More sophisticated boosting algorithms and
their convergence proofs are presented by [10]. However, the naive approach is
sufficient to obtain good results. For our specific problem, H = R

S×A, and 〈., .〉
is the canonical dot product. The criterions which have to be minimized are
JRLE and ĴRLE . As those criterions have the same form (the only difference

is the value of the coefficients β̂j and βj), we present the boosting technique

only for JRLE . Moreover, in our experiments, we choose the restriction set K

to be weighted classification trees [7] from R
S×A to {−1, 1} where each k has

the same norm (as it takes its values in {−1, 1}). Thus, our algorithm is given

by Algo. 2. The output QT = −
∑T

i=1 ξik
∗
i is a weighted sum of T classification



Algorithm 1 Naive boosting algorithm

Require: h0 ∈ R
H , i = 0, T ∈ N

∗ (number of iterations) and (ξj){j∈N} a family of
learning rates.

1: While i < T do
2: Calculate ∂hi

F .
3: Calculate k∗

i associated to ∂hi
F (projection step).

4: hi+1 = hi − ξik
∗
i

5: i = i+ 1
6: end While, output hT

Algorithm 2 Minimization of JRLE with boosting

Require: Q0 ≡ 0, i = 0, T ∈ N
∗ and (ξj){j∈N} a family of learning rates.

1: While i < T do
2: Calculate k∗

i associated to ∂QiJRLE . (projection step)
3: Qi+1 = Qi − ξik

∗
i , i = i+ 1

4: end While, output QT

trees: {k∗i }1≤i≤T . Those T trees can be seen as the features of the problem which
are automatically found by the boosting algorithm. The only step that we have
to clarify is the calculation of k∗. For this particular choice of weak learners, we
have the following Theorem that shows us how to compute it:

Theorem 3. Calculating k∗ = argmaxk∈K〈k, ∂QJRLE〉, where Q ∈ R
S×A, cor-

responds to training a weighted classification tree with the following training data
set:

DC =
(

((sj , aj), wj ,−1) ∪ ((sj , a
∗
j ), wj , 1)

)

{1≤j≤NE}

∪ ((si, ai), wi, oi){1≤i≤NRL} ∪ ((s′p, a
′
p), wp,−op){1≤p≤NRL},

We recall that an element of a training data set of a weighted classification tree
as the following form: (x,w, o) where x is the input, w the weight and o is the
output. With (sj , aj) ∈ DE, (si, ai) corresponds to the first two elements in a
sampled transition (si, ai, ri, s

′
i) ∈ DRL, s′p corresponds to the fourth element in

a sampled transition (sp, ap, rp, s
′
p) ∈ DRL and:

a
∗
j = argmax

a∈A

[Q(sj , aj) + l(sj , πE(sj), a)], a
′
p = argmax

a∈A

Q(s′p, a),

oi = sgn(Q(si, ai)− T
∗
Q(si, ai)), op = sgn(

NRL
∑

i=1

(

Q(si, ai)− T
∗
Q(si, ai)

)

βp(si, ai)),

wi =
2

NP

|Q(si, ai)− T
∗
Q(si, ai)|, wj =

λ

NE

,

wp =
2γ

NP

|

NRL
∑

i=1

(

Q(si, ai)− T
∗
Q(si, ai)

)

βp(si, ai)|.



Proof. Calculating ∂QJRLE for a given Q ∈ R
S×A is done as follows:

∂Q max
a∈A

{Q(sj , a) + l(sj , πE(sj), a)} = δ(sj ,a∗

j
), ∂QQ(sj , πE(sj)) = δ(sj ,πE(sj)),

∂Q(T
∗
Q(si, ai)−Q(si, ai))

2 = 2(Q(si, ai)− T
∗
Q(si, ai))(δ(si,ai) − γ

NRL
∑

p=1

βp(si, ai)δ(s′p,a′
p)
),

∂QJRLE =

∑

1≤j≤NRL
∂Q(T

∗
Q(si, ai)−Q(si, ai))

2

NRL

+
λ
∑

1≤j≤NE
δ(sj ,a∗

j
) − δ(sj ,πE(sj))

NE

.

where a∗j = argmaxa∈A[Q(sj , aj)+l(sj , πE(sj), a)] and a′p = argmaxa∈A Q(s′p, a).

Obtaining k∗ associated to ∂QJRLE when K is the set of classification trees from

R
S×A to {−1, 1} is done as follows. First, we calculate 〈k, ∂QJRLE〉:

〈k, ∂QJRLE〉 =
2

NP

NRL
∑

i=1

(Q(si, ai)− T
∗
Q(si, ai))(k(si, ai)− γ

NRL
∑

p=1

βp(si, ai)k(s
′
p, a

′
p))

+
λ

NE

NE
∑

j=1

k(sj , a
∗
j )− k(sj , πE(sj)).

To maximize 〈k, ∂QJRLE〉, we have to find a classifier k such that k(sj , a
∗
j ) =

1, k(si, ai) = oi = sgn(Q(si, ai) − T
∗
Q(si, ai)), k(sj , πE(sj)) = −1 and

k(sp, a
′
p) = −op = sgn(

∑NRL

i=1

(

Q(si, ai)− T
∗
Q(si, ai)

)

βp(si, ai)) for a maxi-

mum of inputs while taking into consideration the weight factors for each in-
put. The weight factors are the following wi = 2

NP
|Q(si, ai) − T

∗
Q(si, ai)|,

wp = 2γ
NP

|
∑NRL

i=1

(

Q(si, ai)− T
∗
Q(si, ai)

)

βp(si, ai)|, and wj = λ
NE

Thus, in

order to obtain k∗, we train a classification tree with the following training set:

DC =
(

((sj , πE(sj)), wj ,−1) ∪ ((sj , a
∗
j ), wj , 1)

)

{1≤j≤NE}

∪ ((si, ai), wi, oi){1≤i≤NRL} ∪ ((s′p, a
′
p), wp,−op){1≤p≤NRL}.

5 Experiments

In this section, we compare our algorithms (boosted minimization of ĴRLE noted
Residual1 and boosted minimization of JRLE noted Residual2) to APID, LSPI
and a classification algorithm noted Classif which is the boosted minimization
of JE as done by [19]. The comparison is performed on two different tasks. The
first task is a generic task, called the Garnet experiment, where the algorithms
are tested on several randomly constructed finite MDPs where there is a specific
topology that simulates the ones encountered on real continuous MDP. The
second experiment is realized on an LfD benchmark called the Highway problem.
As the MDP are finite in our experiment, we choose a tabular representation for



the parametric algorithms (LSPI, APID). For the boosted algorithms (Residual1,
Residual2 and Classif), the features are automatically chosen by the algorithm
so there is no features choice but we fix the number of weak learners, which
are classification trees, to T = 30. The regularization parameter λ is fixed at
1 (the expert data and the non expert data are supposed to be of an equal
importance), the learning rates are ξi = 1

i+1 , i ∈ N and the discount factor is
γ = 0.99 in all of our experiments. Finally, the margin function is ∀1 ≤ j ≤
NE , ∀a ∈ A\aj , l(sj , aj , aj) = 0, l(sj , aj , a) = 1, the Kernels K ans L are the
canonical dot products in R

S×A and in R
S and λK = 10−5.

5.1 The Garnet experiment

This experiment focuses on stationary Garnet problems, which are a class of ran-
domly constructed finite MDPs representative of the kind of finite MDPs that
might be encountered in practice [3]. A stationary Garnet problem is character-
ized by 3 parameters: Garnet(NS , NA, NB). The parameters NS and NA are the
number of states and actions respectively, and NB is a branching factor specify-
ing the number of next states for each state-action pair. In this experiment, we
choose a particular type of Garnets which presents a topological structure rela-
tive to real dynamical systems. Those systems are generally multi-dimensional
state spaces MDPs where an action leads to different next states close to each
other. The fact that an action leads to close next states can model the noise in a
real system for instance. Thus, problems such as the highway simulator [13], the
mountain car or the inverted pendulum (possibly discretized) are particular cases
of this type of Garnets. For those particular Garnets, the state space is composed
of d dimensions (d = 3 in this particular experiment) and each dimension i has a
finite number of elements xi (xi = 5). So, a state s = [s1, s2, .., si, .., sd] is a tuple
where each composent si can take a finite value between 1 and xi. In addition,
the distance between two states s, s′ is ‖s− s′‖2 =

∑i=d
i=1(s

i− s′i)2. Thus, we ob-

tain MDPs with a possible state space size of
∏d

i=1 xi. The number of actions is
NA = 5. For each state action couple (s, a), we choose randomly NB next states
(NB = 5) via a Gaussian distribution of d dimensions centered in s where the
covariance matrix is the identity matrix of size d, Id, multiply by a term σ (here
σ = 1). σ allows handling the smoothness of the MDP: if σ is small the next
states s′ are close to s and if σ is large, the next states s′ can be very far form
each other and also from s. The probability of going to each next state s′ is gen-
erated by partitioning the unit interval at NB − 1 cut points selected randomly.
We construct a sparse reward R by choosing NS

10 states (uniform random choice
without replacement) where R(s, a) = 1, elsewhere R(s, a) = 0. For each Garnet
problem, it is possible to compute an expert policy πE = π∗ which is optimal
and the expert value function V πE = f∗

Q∗ via the policy iteration algorithm (as
it is a finite MDP where the reward and the dynamics are perfectly known). In
addition, we recall that the value function for a policy π is V π

R = fπ
Qπ .

In this experiment, we construct 100 Garnets {Gp}1≤p≤100 as explained
before. For each Garnet Gp, we build 10 data sets {Dp,q

E }1≤q≤10 composed
of LE trajectories of HE expert demonstrations (si, πE(si)) and 10 data sets



{Dp,q
RL}1≤q≤10 of LR trajectories of HR sampled transitions of the random pol-

icy (for each state, the action is uniformly chosen over the set of actions)
(si, ai, s

′
i, ri). Each trajectory begins from a state chosen uniformly over the

state space, this uniform distribution is noted ρ. Then the RLED algorithms
(APID, Residual1 and Residual2) are fed with the data sets D

p,q
E and D

p,q
RL,

LSPI is fed with D
p,q
RL and the Classif algorithm is fed with D

p,q
E . Each algo-

rithm outputs a function Q
p,q
A ∈ R

S×A and the policy associated to Q
p,q
A is

π
p,q
A (s) = argmaxa∈A Q

p,q
A (s, a). In order to quantify the performance of a given

algorithm, we calculate the criterion T
p,q
A

Eρ[V
πE−V

π
p,q
A ]

Eρ[V πE ] , where V π
p,q
A is calcu-

lated via the policy evaluation algorithm. The mean performance criterion TA is
1

1000

∑100
p=1

∑10
q=1 T

p,q
A . We also calculate, for each algorithm, the variance crite-

rion stdpA =
(

1
10

∑10
q=1(T

p,q
A − 1

10

∑10
q=1 T

p,q
A )2

)
1

2

and the resulting mean variance

criterion is stdA = 1
100

∑100
1 stdpA. In Fig. 1(a), we plot the performance versus

the length of the expert trajectories when LR = 300, HR = 5, LE = 5 in or-
der to see how the RLED algorithm manage to leverage the expert data. In
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Fig. 1. Garnet Experiment

Fig. 1(a), we see that the three RLED algorithms have quite the same perfor-
mance. However, contrary to APID where the features are given by the user
(the tabular representation has a size of 725 features), Residual1 and Residual2
manages to learn automatically 30 trees (which can be seen as features) in order
to obtain the same performance as APID. The RLED algorithms outperforms
the LSPI and Classif algorithm which was expected. We observe the same results
in the experiments leaded by [12]. When the number of expert data grows, the
RLED algorithms performance is getting better which shows that they are able
to leverage those expert data. Besides, we observe that Residual1 and Residual2
have the same performance which shows that using an RKHS embedding is not
critical in that case. In Fig. 1(b), we plot the performance versus the number of
random trajectories when HR = 5, HE = 50, LE = 5 in order to see the effects
of adding non expert data on the RLED algorithms performance. In Fig. 1(b),



we can observe that there is a gap between RLED algorithms and the Classif
algorithm, and that LSPI does not manage to obtain the same results even when
the number of data gets bigger. The gap between RLED and the Classif algo-
rithm gets bigger as the number of RL data is growing which shows that RLED
methods are able to use those data to improve their performance independently
of the optimization technique and the parametrization used. In Fig. 2(a) and
Fig. 2(b), we plot the mean variance.
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Fig. 2. Garnet Experiment

5.2 RLED for the Highway

The Highway problem is used as benchmark in the LfD literature [1,24,13]. In
this problem, the goal is to drive a car on a busy three-lane highway with ran-
domly generated traffic. The car can move left and right, accelerate, decelerate
and keep a constant speed (5 actions). The expert optimizes a handcrafted re-
ward R which favorises speed, punishes off-road, punishes even more collisions
and is neutral otherwise. This reward is quite sparse. We have 729 states cor-
responding to: 9 horizontal positions for the car, 3 horizontal and 9 vertical
positions for the closest traffic car and 3 possible speeds. We compute πE via
the policy iteration algorithm as the dynamics P and the reward R of the car
driving simulator are known (but unknown for the algorithm user). Here, we
build 100 data sets {Dq

E}1≤q≤100 composed of LE trajectories of HE expert
demonstrations (si, πE(si)) and 100 data sets {Dq

RL}1≤q≤100 of LR trajectories
of HR sampled transitions of the random policy. Each trajectory begins from
a state chosen uniformly over the state space and we use the same criterion of
performance as in the Garnet experiment. We plot the performance versus the
length of expert trajectories with LE = 5, HR = 5 and LR = 50. In Fig. 3(a),
we observe that Residual1 and Residual2 have clearly better performances than
APID in that particular experiment. This can be explained by the fact that the
tabular representation for the Highway problem is much bigger than in the in
the Garnets experiments (3645 features) and only few features are important. As
our algorithms are non-parametric, they are able to select the necessary features
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Fig. 3. Highway Experiment

in order to find a good policy. Here, the number of data is too small compared
to the size of the tabular representation and this can explained why parametric
algorithms such as LSPI and APID can not obtain satisfying results. Thus, this
observation makes us believe that our algorithms are suited to scale up.

6 Conclusion

In this paper, we present two new algorithms that minimize the empirical norm
of the OBR guided by constraints define by expert demonstrations. These algo-
rithms tackle the problem of RLED. Our algorithms are original in the sense that
are not derived form the classical Approximate Dynamic Programming frame-
work and manage to alleviate the difficulties inherent to the minimization of the
OBR which are the non-convexity, the non-differentiability and the bias. Those
drawbacks are overcome by the use of a distribution embbeding in an RKHS
and a boosting technique which allows us to obtain non-parametric algorithms,
avoiding the choice of features. We show also, in our experiments, that our algo-
rithms perform well compared to the only state of the art algorithm APID, which
is parametric. Finally, interesting perspective are to improve our algorithms by
using better boosting algorithms, test our algorithms on large scale problems
and to have a better understanding of our algorithm by a theoretical analysis.
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