Globally sparse PLS regression

Abstract : Partial least squares (PLS) regression combines dimensionality reduction and prediction using a latent variable model. It provides better predictive ability than principle component analysis by taking into account both the independent and re- sponse variables in the dimension reduction procedure. However, PLS suffers from over-fitting problems for few samples but many variables. We formulate a new criterion for sparse PLS by adding a structured sparsity constraint to the global SIMPLS optimization. The constraint is a sparsity-inducing norm, which is useful for selecting the important variables shared among all the components. The optimization is solved by an augmented Lagrangian method to obtain the PLS components and to perform variable selection simultaneously. We propose a novel greedy algorithm to overcome the computation difficulties. Experiments demonstrate that our approach to PLS regression attains better performance with fewer selected predictors
Type de document :
Chapitre d'ouvrage
New perspectives in Partial Least Squares and Related Methods, Springer, pp.117-127, 2013, Springer Proceedings in Mathematics & Statistics, 〈10.1007/978-1-4614-8283-3_7〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal-supelec.archives-ouvertes.fr/hal-01069009
Contributeur : Alexandra Siebert <>
Soumis le : vendredi 26 septembre 2014 - 16:09:48
Dernière modification le : lundi 13 octobre 2014 - 15:43:25
Document(s) archivé(s) le : vendredi 14 avril 2017 - 14:44:51

Fichier

liu_GSIMPLS_Springer13.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Tzu-Yu Liu, Laura Trinchera, Arthur Tenenhaus, Dennis Wei, Alfred Hero. Globally sparse PLS regression. New perspectives in Partial Least Squares and Related Methods, Springer, pp.117-127, 2013, Springer Proceedings in Mathematics & Statistics, 〈10.1007/978-1-4614-8283-3_7〉. 〈hal-01069009〉

Partager

Métriques

Consultations de la notice

170

Téléchargements de fichiers

264