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ABSTRACT
The most common way to study the Peak-to-average Power
Ratio (PAPR) distribution is limited to a single Orthogonal
Frequency Division Multiplexing (OFDM) symbol, therefore
it does not reflect the exact value of the PAPR, since we have
more than one OFDM symbol in practice. In this paper,
we consider the Generalized Waveforms for Multi-Carrier
(GWMC) modulation system which is based on any family
of modulation functions, and we derive an upper bound of its
PAPR. To the best of our knowledge, this is the first work
that interprets the behaviour of the Complementary Cumula-
tive Distribution Function (CCDF) of the PAPR for different
number of GWMC symbols, and presents an asymptotic study
for an infinite number of GWMC symbols.

Index Terms— PAPR, Generalized Waveforms for
Multi-Carrier (GWMC), OFDM, upper bound.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is a
technique to send information over several orthogonal carriers
in a parallel fashion. This system has been adopted in many
standards thanks to its robustness against frequency selective
channels and its optimal use of the bandwidth. However, the
OFDM signal presents large amplitude variations compared
to a single carrier signal, because it is the sum of many nar-
rowband signals in the time domain with different amplitudes.
Based on this fact, in-band and out-of-band distortions occur
during the introduction of the signal into a non linear device,
as the High Power Amplifier (HPA). To study these high am-
plitude fluctuations, the Peak-to-average Power Ratio (PAPR)
has been defined. The PAPR is a random variable, as the
symbols arrive randomly at the modulation input. There are
two ways to study this measure, one is based on the static ap-
proach that expresses the maximum of the PAPR as equal to
the number of carriers [1], the other one analyses the Com-
plementary Cumulative Distribution Function (CCDF) of the
PAPR [2], [3], [4]. In these studies, the PAPR has been de-
fined over one OFDM symbol, and the derivation of its distri-
bution is based on the observation of this single OFDM sym-

bol. In our work in [5], a general distribution for the General-
ized Waveforms for Multi-Carrier (GWMC) signal, based on
the observation of several GWMC symbols, has been derived.
In this paper, we first describe the GWMC system considered
in our derivations in Section 2. In Section 3, we derive an
upper bound of the PAPR for the GWMC signal. We show
how the observation duration changes the PAPR behavior in
Section 4.1. The infinite observation case is also presented
and analyzed in Section 4.2. Finally, Section 5 concludes the
paper.

2. SYSTEM DESCRIPTION

We assume a continuous infinite data transmitting over the
time, using a digital modulation scheme. We decompose the
sequence of symbols into several blocks of symbols, with
same duration T . Every block is inserted in parallel in a
GWMC modulation system. At the output of the modulator,
the GWMC signal can be expressed as [5]:

X(t) =
∑
n∈Z

M−1∑
m=0

Cm,n gm(t− nT )︸ ︷︷ ︸
gm,n(t)

, (1)

• M : number of carriers that we assume greater than 8 to
exploit the results of [5],

• Cm,n: input symbols from a mapping technique, that
take complex values and assumed with zero mean,

• (gm)m∈[[0,M−1]] : ∈ L2(R) (the space of square inte-
grable functions), family of functions representing the
modulation system.



3. UPPER BOUND OF THE PAPR

For an infinite transmission over time and any observation in-
terval I , the PAPR of the GWMC signal can be defined as:

PAPRc(I) =
maxt∈I |X(t)|2

Pc,mean
, (2)

where Pc,mean = lim
t0→+∞

1

2t0

∫ t0

−t0
E(|X(t)|2) dt

=
σ2
C

T

M−1∑
m=0

‖gm‖2. (3)

Note that ‖gm‖2 =
∫ +∞
−∞ |gm(t)|2 dt, σ2

C = E(|Cm,n|2)
means the variance, and the subscript c corresponds to the
continuous-time context. For the details of the mean power
derivation, the reader can refer to [6] for the BFDM 1 case,
and to our work [5] for the general case.
The aim here is to find an upper bound of the PAPR for a
GWMC signal. Then, letting M be a finite number of carri-
ers, and (gm)m∈[[0,M−1]] be a family of modulation functions
that satisfies Ai

i = minm,t

∑
n∈Z |gm(t− nT )|i > 0 and

Bi
i = maxm,t

∑
n∈Z |gm(t− nT )|i < +∞ for i ∈ {1, 2},

we have max
t∈I
|X(t)| = max

t∈I
|
∑
n∈Z

M−1∑
m=0

Cm,ngm(t− nT )|

≤ max
t∈I

M−1∑
m=0

|
∑
n∈Z

Cm,ngm(t− nT )|

≤ max
m,n

M−1∑
m=0

|Cm,n|
∑
n∈Z

|gm(t− nT )|

≤ M max
m,n
|Cm,n|B1, (4)

and we have Pc,mean =
σ2
C

T

M−1∑
m=0

∫ T
2

−T
2

∑
n∈Z

|gm(t− nT )|2 dt,

hence MA2
2σ

2
C ≤ Pc,mean ≤MB2

2σ
2
C . (5)

Thus, from Eq.(4) and Eq.(5), we have:

Property. (An upper bound of the PAPR for the GWMC
system)
For any observation interval I and any input symbols,

PAPRc(I) ≤
maxm,n |Cm,n|2B2

1

σ2
CA

2
2

M := PAPRc,bound (6)

Note that: PAPRc,sup = sup
I

PAPRc(I) ≤ PAPRc,bound

3.1. Examples

Hereafter, we give an upper bound of the PAPR for some par-
ticular modulation systems applying the Eq.(6).

1Biorthogonal Frequency Division Multiplexing

• For input symbols using the Quadrature Amplitude
Modulation (QAM) scheme of K states, we have:
maxm,n |Cm,n|2 = 2(

√
K − 1)2 and σ2

C = 2
3
(
√
K − 1),

then PAPRc,bound = M
3B2

1(
√
K − 1)

A2
2

√
K + 1

.

• For input symbols using the Phase-Shift Keying (PSK)
modulation scheme, the value of the maximum power is
equal to the mean power, the envelope is then constant,

thus PAPRc,bound = M
B2

1

A2
2

. (7)

• Let us consider now the OFDM system, we have:

|gm(t− nT )| = |e
j2πm(t−nT )

T Π[0,T ](t− nT )|

where Π[0,T ] =

{
1 if 0 ≤ t ≤ T
0 else

hence A2
2 = B2

1 = 1,

and PAPRc,bound =
maxm,n |Cm,n|2

σ2
C

M. (8)

We can observe that Eq.(8) corresponds to the same ex-
pression obtained by S. Zabre in [7] and D. Guel in [8].
Thus, for the case of OFDM with PSK modulation
scheme, combining Eq.(7) with Eq.(8), we get:

PAPRc,bound = M. (9)

In this case the upper bound is reached, and then
PAPRc,bound = PAPRc,sup.

• For the Nonorthogonal FDM (NOFDM) [9] system,
considering Hamming window, we have:

gm(t) = e
j2πmt
T w(t),

w(t) =

{
0.54− 0.46 cos(2π t

T
) if 0 ≤ t ≤ T

0 else

hence A2
2 = (0.08)2 and B2

1 = 1,

then PAPRc,bound =
maxm,n |Cm,n|2

6.4× 10−3σ2
C

M. (10)

4. CCDF OF THE PAPR OVER SEVERAL GWMC
SYMBOLS

The CCDF is usually used in the literature as a performance
criterion of the PAPR. It describes the probability that a real-
valued random variable with a given probability distribution
will be found at a certain value greater than or equal to γ.
In Section 3, we have shown that the PAPR can not exceed
the PAPRc,bound value, therefore, there is a finite PAPRc,sup

such that,

for any I and γ > PAPRc,sup Pr(PAPRc(I) ≥ γ) = 0. (11)



Now, let γ ≤ PAPRc,sup . We have two approaches for the
PAPR analysis. The first involves the finite observation case
in Section 4.1 and the second is the infinite observation case
in Section 4.2. The analysis is performed in the discrete case,
and the latest results are still applicable.

4.1. Finite observation duration

For a finite observation duration limited to N GWMC sym-
bols, and for γ sufficiently small compared with PAPRc,sup,
the CCDF of the PAPR is expressed as follows [5]:

Pr(PAPRNd ≥ γ) ≈ 1−
∏

k∈[[0,NP−1]]

[1− e−x(k)γ ], (12)

with x(k) =

∑M−1
m=0 ‖gm‖

2

P
∑
n∈Z

∑M−1
m=0 |gm(k − nP )|2

.

P is the number of samples existing in one GWMC symbol.
The subscript d corresponds to the discrete-time context, and
the exponent N is a finite number of GWMC symbols con-
sidered in our observation. In the case of the conventional
OFDM, we have:

Pr(PAPRNd ≥ γ) ≈ 1− [1− e−γ ]NM . (13)

We should note that the CCDF is an increasing function re-
spect to N . As the number of OFDM symbols observed in-
creases, the probability to have large peaks gets larger. Figure
1 shows the simulated CCDF of the PAPR for different num-
ber of OFDM symbolsN ∈ {1, 2, 3, 4}. We generate for each
sequence of N OFDM symbols, 10 000 realizations using a
(Quadrature Phase-Shift Keying) QPSK modulation scheme,
with M = 64. From Eq.(13), we can also mention that the

Fig. 1: Simulated CCDF of the PAPR for different number of
GWMC symbols observed.

fact to increase the number N of observed GWMC symbols
by a multiplicative factor of α has the same effect of multiply-
ing the number of carriers M by the same factor α. We can
see this fact from the simulated CCDF in Figure 2, in which

Table 1: N and M relationship.

(N1,M1)⇔ (N2,M2)
N1M1 = N2M2 = NM = 128 (2, 64)⇔ (1, 128)
N1M1 = N2M2 = NM = 256 (4, 64)⇔ (1, 256)
N1M1 = N2M2 = NM = 512 (8, 64)⇔ (1, 512)

we consider three values of NM as defined in Table 1.
However, when N goes to infinity, the shape of the CCDF

Fig. 2: Simulated CCDF of the PAPR showing the equiva-
lence between increasing the observation duration N and the
number of carriers M.

curve is not the same as when M goes to infinity. In the fol-
lowing section we study this last case.

4.2. Infinite observation duration

for the infinite observation duration case, we have shown that
the CCDF of the PAPR is expressed as [5]:

Pr(PAPR∞d ≥ γ) ≈ 1−
∏
k∈N

[1− e−x(k)γ ], (14)

and x(k) =

∑M−1
m=0 ‖gm‖

2

P
∑
n∈Z

∑M−1
m=0 |gm(k − nP )|2

.

From this expression, we notice that the probability that the
PAPR exceeds a certain value γ that is less or equal than
PAPRc,sup, is 1, in fact:

we have
M−1∑
m=0

‖gm‖2 =

M−1∑
m=0

∑
n∈Z

P−1∑
k=0

|gm(k − nP )|2,

then A2
2MP <

M−1∑
m=0

‖gm‖2 < B2
2MP, (15)

and
1

B2
2MP

<
1

P
∑
n∈Z

∑M−1
m=0 |gm,n(k)|2

<
1

A2
2MP

. (16)



Fig. 3: CCDF of the PAPR for infinite observation dura-
tion. Fig. 4: CCDF of the PAPR for infinite number of carriers.

From Eq.(15) and Eq.(16) we get:

A2
2

B2
2

< x(k) <
B2

2

A2
2

, (17)

hence 1− e−x(k)γ < 1− e
−
B2

2
A2

2

γ
< 1.

Thus, for an infinite observation duration (N → +∞), and
for γ sufficiently small compared with PAPRc,sup, we have

Pr(PAPR∞d ≥ γ) = 1 (18)

Considering OFDM system with PSK modulation scheme,
Figure 3 represents the theoretical shape of the CCDF curve
for an infinite observation duration, and Figure 4 shows the
theoretical CCDF curve for an infinite number of carriers. We
observe that for higher values of N , the CCDF is always up-
per bounded by the case N = +∞, and for M = +∞ we
have a large peak for any value of γ.
We can conclude that, for an infinite observation duration,
the equivalence between the number of GWMC symbols ob-
served and the number of carriers, is not valid anymore.

5. CONCLUSION

In this paper, we have derived an upper bound of the PAPR for
the GWMC signal for different digital modulation schemes.
The PAPR distribution has been discussed for both finite and
infinite observation duration. For the first case, we have
proved that when we increase the number of OFDM symbols
observed we increase the probability to have large peaks, we
have also shown that the fact to increase the number of OFDM
symbols observed has the same effect as to increase the num-
ber of carriers. For the second case, we developed an asymp-
totic study of the PAPR distribution function for an infinite
observation duration and for an infinite number of carriers.
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