
HAL Id: hal-01086345
https://hal-supelec.archives-ouvertes.fr/hal-01086345

Submitted on 24 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local Policy Search in a Convex Space and Conservative
Policy Iteration as Boosted Policy Search

Bruno Scherrer, Matthieu Geist

To cite this version:
Bruno Scherrer, Matthieu Geist. Local Policy Search in a Convex Space and Conservative Policy
Iteration as Boosted Policy Search. ECMLPKDD 2014, Sep 2014, Nancy, France. Proceedings of the
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases, 8726, pp.35 - 50, 2014, Lecture Notes in Computer Science. <10.1007/978-3-662-44845-
8_3>. <hal-01086345>

https://hal-supelec.archives-ouvertes.fr/hal-01086345
https://hal.archives-ouvertes.fr

Local Policy Search in a Convex Space and

Conservative Policy Iteration as Boosted Policy Search

Bruno Scherrer1, Matthieu Geist2

1 Inria, Villers-lès-Nancy, F-54600, France,

Université de Lorraine, LORIA, UMR 7503, Vandœuvre-lès-Nancy, F-54506, France
2 Supélec – IMS-MaLIS Research Group & UMI 2958 (GeorgiaTech-CNRS), Metz, France

Abstract. Local Policy Search is a popular reinforcement learning approach for

handling large state spaces. Formally, it searches locally in a parameterized policy

space in order to maximize the associated value function averaged over some pre-

defined distribution. The best one can hope in general from such an approach is

to get a local optimum of this criterion. The first contribution of this article is the

following surprising result: if the policy space is convex, any (approximate) local

optimum enjoys a global performance guarantee. Unfortunately, the convexity

assumption is strong: it is not satisfied by commonly used parameterizations and

designing a parameterization that induces this property seems hard. A natural so-

lution to alleviate this issue consists in deriving an algorithm that solves the local

policy search problem using a boosting approach (constrained to the convex hull

of the policy space). The resulting algorithm turns out to be a slight generalization

of conservative policy iteration; thus, our second contribution is to highlight an

original connection between local policy search and approximate dynamic pro-

gramming.

1 Introduction

We consider the reinforcement learning problem [24] formalized through Markov De-

cision Processes (MDP) [21], in the situation where the state space is large and ap-

proximation is required. On the one hand, Approximate Dynamic Programming (ADP)

is a standard approach for handling large state spaces. It consists in mimicking in an

approximate form the standard algorithms that were designed to optimize globally the

policy (maximizing the associated value function for each state). On the other hand,

Local Policy Search (LPS) consists in parameterizing the policy (often called an “ac-

tor”) and locally maximizing the associated expected value function. This can be done

for example using a (natural) gradient ascent [3, 10]—possibly with a critic [25, 20],

expectation-maximization (EM) [12], or even directly using some black-box optimiza-

tion algorithm [9]. LPS methods work particularly well in practice: the just cited papers

describe applications to standard benchmarks and applications such as robotics, that are

competitive with the ADP approach. Surprisingly, gradient-based and EM approaches,

that are usually prone to be stuck in local optima, do not seem to be penalized in ap-

plications to Reinforcement Learning. Even more surprisingly, it was shown [10] that a

natural gradient ascent in the policy space can outperform ADP on the Tetris game.

Following the seminal works by [4], it has been shown that ADP algorithms enjoy

global performance guarantees, bounding the loss of using the computed policy instead

of using the optimal one as a function of the approximation errors involved along the

iterations: see [18] for approximate policy iteration (API), [19] for approximate value

iteration (AVI), or more generally [22] for approximate modified policy iteration. To

the best of our knowledge, similar general guarantees do not exist in the literature for

LPS algorithms. In general though, the best one can hope for LPS is to get a local opti-

mum of the optimized fitness (that is, a local maximum of the averaged value function),

and the important question of the loss with respect to the optimal policy remains open.

As for instance mentioned as the main “future work” in [6], where the convergence

of a family of natural actor-critic algorithms is proven, “[i]t is important to character-

ize the quality of converged solutions.” The motivation of this paper is to deepen the

understanding on the LPS approach.

Our main contribution (Theorem 3, Section 3) is to show that if the policy space on

which one performs LPS is a convex subset of the full space of stochastic policies—

equivalently this means that if two policies are taken in the space, then their stochas-

tic mixture also belongs to the space—, then any (approximate) local optimum of the

expected value function enjoys a global performance guarantee, similar to—actually

slightly better than (see Section 5)—the one provided for ADP algorithms. After ex-

plaining that designing parameterizations that imply the convexity assumption seems

particularly difficult, we will propose in Section 4 an algorithmic solution based on a

boosting approach (seen as a functional gradient ascent) that can do LPS in the convex

hull of a space of deterministic policies. The algorithm we will then obtain happens to

be a slight generalization of the Conservative Policy Iteration algorithm [11] that was

originally introduced from an ADP viewpoint. Thus, another contribution of our work

amounts to draw an original connexion between ADP and LPS. Section 5 will discuss

our analysis; notably, a comparison to similar bounds for ADP is proposed and the prac-

tical consequences of our result are discussed. Section 6 opens some perspectives. The

next section provides the necessary background and states formally what we mean by

local policy search.

2 Background and Notations

Write ∆X the set of probability distributions over a countable set X and Y X the ap-

plications from X to the set Y . By convention, all vectors are column vectors, except

distributions which are row vectors (for left multiplication). We consider a discounted

MDP M = {S,A, P, r, γ} [21, 5], with S the countable state space3, A the countable

action space, P ∈ (∆S)
S×A the Markovian dynamics (P (s′|s, a) denotes the probabil-

ity of transiting to s′ from the (s, a) couple), r ∈ R
S×A the bounded reward function

and γ ∈ [0, 1) the discount factor.

A stochastic policy π ∈ (∆A)
S associates to each state s a probability distribution

π(.|s) over the action space A. We say that a policy space Π that is a subset of (∆A)
S

3 These results can easily be extended to the case of non-countable state space and compact

action space. We chose the countable space setting for the ease and clarity of exposition.

is convex (or equivalently stable by stochastic mixture) if it satisfies:

∀π, π′ ∈ Π, ∀α ∈ (0, 1), (1− α)π + απ′ ∈ Π.

For a given policy π, we define rπ ∈ R
S as

rπ(s) =
∑

a∈A

π(a|s)r(s, a) = Ea∼π(.|s)[r(s, a)]

and Pπ ∈ (∆S)
S as

Pπ(s
′|s) =

∑

a∈A

π(a|s)P (s′|s, a) = Ea∼π(.|s)[P (s
′|s, a)].

The value function vπ quantifies the quality of a policy π for each state s by measuring

the expected cumulative reward received for starting in this state and then following the

policy:

vπ(s) = E

∑

t≥0

γtrπ(st)|s0 = s, st+1 ∼ Pπ(.|st)

 .

The Bellman operator Tπ of policy π associates to each function v ∈ R
S the function

defined as

[Tπv](s) = E [rπ(s) + γv(s′)|s′ ∼ Pπ(.|s)] ,

or more compactly Tπv = rπ +γPπv. The value function vπ is known to be the unique

fixed point of Tπ .

It is also well-known that there exists a policy π∗ that is optimal in the sense that

it satisfies vπ∗
(s) ≥ vπ(s) for all states s and policies π. The value function v∗ is the

unique fixed point of the following nonlinear Bellman equation:

v∗ = Tv∗ with Tv = max
π∈AS

Tπv

where the max is taken componentwise. Given any function v ∈ R
S , we say that a

policy π′ is greedy with respect to v if Tπ′v = Tv, and we write G(π) for the set of

policies that are greedy with respect to the value vπ of some policy π. The notions of

optimal value function and greedy policies are fundamental to optimal control because

of the following property: any policy π∗ that is greedy with respect to the optimal value

is an optimal policy and its value vπ∗
is equal to v∗. Therefore, an equivalent charac-

terization of the optimality of some policy π is that it is greedy with respect to its own

value:

π ∈ G(π). (1)

For any distribution µ, we define the γ-weighted occupancy measure4 induced by

the policy π when the initial state is sampled from µ as dµ,π = (1 − γ)µ(I − γPπ)
−1

(we recall µ to be a row vector by convention) with (I − γPπ)
−1 =

∑

t≥0(γPπ)
t.

4 When it exists, this measure tends to the stationary distribution of Pπ when the discount factor

tends to 1.

It can easily be seen that µvπ = 1
1−γ

dµ,πrπ . For any two distributions µ and ν, we

write
∥

∥

µ
ν

∥

∥

∞
for the smallest constant C satisfying µ(s) ≤ Cν(s), for any s ∈ S (this

constant is actually the supremum norm of the componentwise ratio, thus the notation).

From an algorithmic point of view, Dynamic Programming methods compute the

optimal value policy pair (v∗, π∗) in an iterative way. When the problem is large and

cannot be solved exactly, Approximate Dynamic Programming (ADP) refers to noisy

implementations of these exact methods, where the noise is due to approximations at

each iteration. For instance, Approximate Value and Policy Iteration respectively corre-

spond to the following schemes:

vk+1 = Tvk + ǫk and

{

vk = vπk
+ ǫk

πk+1 ∈ G(vk)
.

In the Local Policy Search (LPS) context on which we focus in this paper, we write Π

the space where we perform the search. For a predefined distribution ν of interest, the

problem addressed by LPS can be cast as follows:

find π ∈ Π s.t. π is a local maximum of Jν(π) = Es∼ν [vπ(s)].

Assume that we are able to (approximately) find such a locally optimal policy π. A

natural question is: can we say something about the distance between the value of this

policy vπ and that of the optimal policy v∗ = vπ∗
? Quite surprisingly, and in contrast

with most optimization problems, we are going to provide a condition on the policy

space Π that allows to give a nontrivial performance guarantee; this is the aim of the

next section.

3 Main Result

In order to state our main result, we need to define a relaxation of the set of policies that

are greedy with respect to some given policy.

Definition 1 (µ-weighted ǫ-greedy policies). We write GΠ(π, µ, ǫ) for the set of poli-

cies which are ǫ-greedy respectively to π (in µ-expectation), formally defined as

GΠ(π, µ, ǫ) = {π′ ∈ Π such that ∀π′′ ∈ Π, µTπ′vπ + ǫ ≥ µTπ′′vπ} .

This is indeed a relaxation of G, as it can be observed that for all policies π and π′,

π′ ∈ G(π) ⇔ ∀µ ∈ ∆S , π
′ ∈ GΠ(π, µ, 0)

⇔ ∃µ ∈ ∆S , µ > 0, π′ ∈ GΠ(π, µ, 0).

We are now ready to state our first important result.

Theorem 1. Let π be some policy in Π . The following two properties are equivalent:

∀π′ ∈ Π, lim
α→0

νv(1−α)π+απ′ − νvπ

α
≤ ǫ. (2)

π ∈ GΠ(π, dν,π, (1− γ)ǫ). (3)

Equation (3) says that the policy π is approximately greedy with respect to itself, and

can be thus seen as a relaxed version of the optimality Equation (1); as we will show

below, this will allow us to provide a global performance guarantee for the policy π.

Equation (2) says that π is an approximate local optimum of π 7→ Jν(π) if π is allowed

to move in the convex hull of the policy space Π: indeed, whatever the direction we

look at in this space, the slope of the improvement—locally around π—is bounded by

ǫ. Theorem 1 thus has the following corollary.

Corollary 1 Assume that the space Π is convex. Then any policy π that is an ǫ-local

optimum of π 7→ Jν(π) (in the sense of Equation (2)) satisfies the relaxed Bellman

Equation (3).

We now turn to the proof of Theorem 1. The following technical (but simple) lemma

will be useful for the proof.

Lemma 1. For any policies π and π′, we have

vπ′ − vπ = (I − γPπ′)−1(Tπ′vπ − vπ).

Proof. The proof uses the fact that the linear Bellman Equation vπ = rπ + γPπvπ
implies vπ = (I − γPπ)

−1rπ . Then,

vπ′ − vπ = (I − γPπ′)−1rπ′ − vπ

= (I − γPπ′)−1(rπ′ + γPπ′vπ − vπ)

= (I − γPπ′)−1(Tπ′vπ − vπ). ⊓⊔

Proof (Proof of Theorem 1). For any α and any π′ ∈ Π , write πα = (1 − α)π + απ′.

Using Lemma 1, we have:

ν(vπα
− vπ) = ν(I − γPπα

)−1(Tπα
vπ − vπ).

By observing that rπα
= (1 − α)rπ + αrπ′ and Pπα

= (1 − α)Pπ + αPπ′ , it can be

seen that Tπα
vπ = (1 − α)Tπvπ + αTπ′vπ . Thus, using the fact that vπ = Tπvπ , we

get:

Tπα
vπ − vπ = (1− α)Tπvπ + αTπ′vπ − vπ

= α(Tπ′vπ − vπ).

In parallel, we have

(I − γPπα
)−1 = (I − γPπ + αγ(Pπ − Pπ′))−1

= (I − γPπ)
−1(I + αM),

where M is bounded (the exact form of the matrix M does not matter). Put together,

we obtain

ν(vπα
− vπ) = αν(I − γPπ)

−1(Tπ′vπ − vπ) +O(α2).

Taking the limit, we obtain

lim
α→0

ν(vπα
− vπ)

α
= ν(I − γPπ)

−1(Tπ′vπ − vπ)

=
1

1− γ
dν,π(Tπ′vπ − vπ),

and the result follows.

A second important step in our analysis consists in showing that a relaxed optimality

characterization as the one of Equation (3) implies a global performance guarantee. To

state this result, we first need to define the “ν-greedy-complexity” of our policy space,

which measures how good Π was designed so as to approximate the greedy operator,

for a starting distribution ν.

Definition 2 (ν-greedy-complexity). We define Eν(Π) the ν-greedy-complexity of the

policy space Π as

Eν(Π) = max
π∈Π

min
π′∈Π

(dν,π (Tvπ − Tπ′vπ)) .

Since Tvπ − Tπvπ = Tvπ − vπ ≥ 0, we have Eν(Π) ≥ 0 for any policy space Π . In

the limit case where Π contains all (deterministic) policies, we have Eν(Π) = 0.

Given this definition, we are ready to state our second important result.

Theorem 2. If π ∈ GΠ(π, dν,π, ǫ), then for any policy π′ and for any distribution µ

over S , we have

µvπ′ ≤ µvπ +
1

(1− γ)2

∥

∥

∥

∥

dµ,π′

ν

∥

∥

∥

∥

∞

(Eν(Π) + ǫ).

Notice that this theorem is actually a slight5 generalization of Theorem 6.2 of [11]. We

provide the proof for the sake of completeness.

Proof. Using again Lemma 1 and the fact that Tvπ ≥ Tπ′vπ , we have

µ(vπ′ − vπ) = µ(I − γPπ′)−1(Tπ′vπ − vπ)

=
1

1− γ
dµ,π′(Tπ′vπ − vπ) ≤

1

1− γ
dµ,π′(Tvπ − vπ).

Since Tvπ − vπ ≥ 0 and dν,π ≥ (1− γ)ν, we get

µ(vπ′ − vπ) ≤
1

1− γ

∥

∥

∥

∥

dµ,π′

ν

∥

∥

∥

∥

∞

ν(Tvπ − vπ)

≤
1

(1− γ)2

∥

∥

∥

∥

dµ,π′

ν

∥

∥

∥

∥

∞

dν,π(Tvπ − vπ).

5 Theorem 2 holds for any policy π′, not only for the optimal one, and the error term is split up

(which is necessary to provide a more general result).

Using dν,π(Tvπ − vπ) = (dν,πTvπ − dν,πvπ), we get

µ(vπ′ − vπ) ≤
1

(1− γ)2

∥

∥

∥

∥

dµ,π′

ν

∥

∥

∥

∥

∞

×

(

dν,πTvπ − max
π′∈Π

dν,πTπ′vπ + max
π′∈Π

dν,πTπ′vπ − dν,πvπ

)

≤
1

(1− γ)2

∥

∥

∥

∥

dµ,π′

ν

∥

∥

∥

∥

∞

(Eν(Π) + ǫ). ⊓⊔

The first main result of the paper is a straightforward combination of Corollary 1

and Theorem 2.

Theorem 3. Assume that the space Π is convex. Then any policy π that is an ǫ-local

optimum of π 7→ Jν(π) (in the sense of Equation (2)) enjoys the following global

performance guarantee:

Es∼µ[v∗(s)− vπ(s)] ≤
1

1− γ

∥

∥

∥

∥

dµ,π∗

ν

∥

∥

∥

∥

∞

(

Eν(Π)

1− γ
+ ǫ

)

.

4 About the Convex Policy Space Assumption

The remarkable result of the previous section—a connection between local optimality

and global guarantee—relies on the assumption that the policy space Π is convex.

Though this assumption may look mild at first sight, we are going to argue that it is in

fact strong. We will then propose a natural algorithmic approach for performing Local

Policy Search on the convex hull of some (not necessarily convex) policy space Π .

4.1 A Strong Assumption

A common approach (for continuous actions mainly) is to parameterize a mapping from

state to actions and to put it as the mean of a Gaussian distribution, that is

πθ(a|s) ∝ exp

(

−
1

2
‖a− uθ(s)‖

2
Σ−1

)

,

with here uθ the parameterized state to action mapping and Σ a predefined covariance

matrix. Obviously, the space of such policies is not convex, since a mixture of Gaussian

distributions is in general not a Gaussian distribution. Another common approach (for

discrete actions) is to adopt a parameterized Gibbs distribution, that is

πθ(a|s) ∝ exp
(

θ⊤ψ(s, a)
)

,

where θ⊤ψ(s, a) can be seen as a parameterized state-action or score function. Here

again, the resulting policy space is not convex in general.

In fact, we consider that it is an open problem to design a non-trivial parameteriza-

tion that defines a convex policy space (by non-trivial, we mean a space that is neither

simply a convex combination of a small number of policies nor the full convex hull of

AS). Even in a one-state situation, the answer does not seem obvious: this requires to

find distributions that are stable by mixture and we did not manage to find any satisfying

solution. An alternative approach, that we develop next, is to consider for Π the convex

hull of a set of parameterized policies.

4.2 Boosting

Let P be a space of policies and Π = co(P) denote its convex hull. We propose to use

boosting for finding a local maximum of Jν(π) on Π . More precisely, we propose to

apply the AnyBoost.L1 algorithm [17]: it sees boosting as a gradient ascent in function

space and constrains the search in the convex hull of the base policy space. Let ∇Jν(π)
be the functional gradient (according to π) of the LPS objective function. Applied to

our problem, AnyBoost.L1 works as follows. At iteration k, we have a policy πk−1,

and perform the following steps:

1. compute hk ∈ argmaxh∈P〈∇Jν(πk−1), h〉,
2. update the policy: πk = (1− αk)πk−1 + αkhk, with αk ∈ (0, 1) the learning rate.

The basic idea is to perform a functional gradient ascent on Jν(π). However, the gra-

dient ∇Jν(πk−1) does not generally belong to P , so we search for a policy h with

greatest inner product with ∇Jν(πk−1). This corresponds to the first step. The second

step updates the policy as a mixture of the old one and of the computed hk, the mix-

ture weight αk being the learning rate of the gradient ascent. In order to obtain a more

practical algorithm, one has to rephrase the optimization problem of the first step.

Proposition 1 We have that

argmax
h∈P

〈∇J(π), h〉 = argmin
h∈P

dν,π(Tvπ − Thvπ).

In particular, assume that P is a space of deterministic policies and define qπ = Tavπ
the state-action value function of a policy π (writing with a slight abuse of notation Ta
the Bellman operator for the policy associating action a to any state), then

argmax
h∈P

〈∇J(π), h〉 = argmin
h∈P

∑

s∈S

dν,π(s)

(

max
a∈A

qπ(s, a)− qπ(s, h(s))

)

.

This process can be seen as an approximate version of the greedy step of the Policy

Iteration algorithm and may be implemented through a weighted classification problem,

or through an ℓp-regression of the qπ function.

Proof (Proof of Proposition 1). The functional gradient of Jν is

∇Jν(π) =
1

1− γ

∑

s∈S

dν,π(s)
∑

a∈A

∇π(a|s)qπ(s, a).

This is a rather direct extension of the classic policy gradient theorem [25]. Then, we

need to compute its inner product with a function h of P:

〈∇J(π), h〉 =
1

1− γ
〈
∑

s

dν,π(s)
∑

a

∇π(a|s)qπ(s, a), h〉

=
1

1− γ

∑

s

dν,π(s)
∑

a

〈∇π(a|s), h〉qπ(s, a)

=
1

1− γ

∑

s

dν,π(s)
∑

a

h(a|s)qπ(s, a)

=
1

1− γ
dν,π(Thvπ).

Eventually, this allows concluding:

argmax
h∈H

〈∇J, h〉 = argmax
h∈H

dν,π(Thvπ)

= argmin
h∈H

dν,π(Tvπ − Thvπ). ⊓⊔

4.3 Connection to CPI

Thus, the boosting approach to LPS consists in computing a mixture of policies, each

new component of the mixture being the solution of an approximation of the greedy

policy respectively to the preceding estimated mixture. It turns out that Conservative

Policy Iteration (CPI) [11] is a specific case of this general algorithm, the only differ-

ence being that CPI chooses specific values for the learning rate (such as guaranteeing

improvements).

If the algorithm resulting from this boosting approach is not really new, it provides

some clarifications about LPS, API and CPI. First, this shows that CPI can be derived

as an LPS approach, whereas it was originally derived from an API viewpoint, with

the desire to fix the potential policy degradation problem of API [11]. This draws a

connection between API and LPS that has not yet been documented in the literature,

and highlights the fact that CPI is at the frontier of these two approaches. Second, it

provides some leads of improvement for CPI (which has strong guarantees but is in

general slow). One could also choose the learning rates according to the boosting

optimization theory, or use related heuristics or even some line search. Last but not

least, AnyBoost.L1 is perhaps the more natural way to search for a local maximum

of Jν on a convex policy space. Looking for alternative algorithms performing LPS in

convex policy spaces is an interesting research direction.

5 Discussion

In this section, we discuss the relations of our analyses with previous works, we com-

pare this guarantee with the standard ones of approximate dynamic programming (fo-

cusing particularly on the API algorithm) and we discuss some practical and theoretical

consequences of our analysis.

5.1 Closely Related Analysis

A performance guarantee very similar to the one we provide in Theorem 2 was first

derived for CPI by [11]. This result of the literature was certainly considered specific

to the CPI algorithm, that has unfortunately not been used widely in practice probably

because of its somewhat complex implementation. In contrast, we show in this paper

that such a performance guarantee is valid for any method that finds a policy that satis-

fies a relaxed Bellman identity like that given Equation (3), among which CPI naturally

arises, as shown in section 4.

Though the main result of our paper is Theorem 3, and since Theorem 2 appears in

a very close form in [11], our main technical contribution is Theorem 1 that highlights

a deep connection between local optimality and a relaxed Bellman optimality char-

acterization. A result, that is similar in flavor, is derived by [10] for the Natural Policy

Gradient algorithm: Theorem 3 there shows that natural gradient updates are moving the

policy towards the solution of a (DP) update. The author writes: “The natural gradient

could be efficient far from the maximum, in that it is pushing the policy toward choos-

ing greedy optimal actions”. Though there is an obvious connection with our work, the

result there is limited since—similarly to the work we have just mentioned on CPI—

(i) it seems to be specific to the natural gradient approach (though our result is general),

and (ii) it is not exploited so as to connect with a global performance guarantee.

5.2 Relations to Bounds of Approximate Dynamic Programming

The performance guarantee of any approximate dynamic programming algorithm im-

plies (i) a (quadratic) dependency on the average horizon 1
1−γ

, (ii) a concentration co-

efficient (which quantifies the divergence between the worst discounted average future

state distribution when starting from the measure of interest, and the distribution used

to control the estimation errors), and (iii) an error term linked to the estimation error

encountered at each iteration (which can be due to the approximation of value functions

and/or policies). Depending on what quantity is estimated, a comparison of these esti-

mation errors may be hard. To ease the comparison, the following discussion focuses

on the API algorithm. Note however that several aspects of our comparison holds for

other ADP algorithms.

API generates a sequence of policies: at each iteration, a new policy is one that

is approximately greedy with respect to the value of the previous policy. This can

be achieved through an ℓp-regression of the state-action value function [5, 18, 13] or

through a weighted classification problem [14, 7, 16]. Whatever the approach, the se-

quence of policies belongs (implicitely for ℓp-regression or explicitely for classifica-

tion) to some space P that is typically a set of deterministic policies. For an initial

policy π0 and a given distribution ν, the API algorithm iterates as follows:

pick πk+1 ∈ P

such as (approximately) minimizing ν(Tvπk
− Tπk+1

vπk
).

This is similar to CPI/boosted LPS, up to the fact that (i) it uses ν instead of dν,π
to approximate the greedy policy and (ii) it is optimistic (in the sense that αk = 1).

To provide the API bound, we need an alternative concentration coefficient as well as

some new error characterizing the quality of the space P . Let Cµ,ν be the concentration

coefficient defined as

Cµ,ν = (1− γ)2
∞
∑

i=0

∞
∑

j=0

γi+j sup
π∈AS

∥

∥

∥

∥

µ(Pπ∗
)i(Pπ)

j

ν

∥

∥

∥

∥

∞

.

Consider the measure of the complexity of the policy space P , similar to Eν :

E ′
ν(P) = max

π∈P
min
π′∈P

(ν(Tvπ − Tπ′vπ)).

Let also e be an estimation error term that tends to zero as the number of samples tends

to infinity (at a rate depending on the chosen approximator). The performance guarantee

of API [18, 1, 15, 16, 8] can be expressed as follows:

lim sup
k→∞

µ(v∗ − vπk
) ≤

Cµ,ν

(1− γ)2
(E ′

ν(P) + e).

This bound is to be compared with the result of Theorem 3, regarding the three terms

involved: the average horizon, the concentration coefficient and the greedy error term.

Each term is discussed now, a brief summary being provided in Table 1. As said in

Section 5.1, the LPS bound is really similar to the CPI one, and the bounds of CPI and

a specific instance of API have been compared by [8]. Our discussion can be seen as

complementary: we consider API more generally, we provide some new elements of

comparison, and we illustrate the methods empirically.

Table 1. Comparison of the performance guarantees for LPS and API.

bounded term horizon term concentration term error term

LPS µ(v∗ − vπ)
1

(1−γ)2

∥

∥

∥

dµ,π∗

ν

∥

∥

∥

∞

Eν(Π) + ǫ(1− γ)

API lim supk→∞
µ(v∗ − vπk

) 1
(1−γ)2

Cµ,ν E ′

ν(P) + e

Horizon term. Both bounds have a quadratic dependency on the average horizon
1

1−γ
. For approximate dynamic programming, this bound can be shown to be tight [23],

the only known solution to improve this being to introduce non-stationary policies [23].

The tightness of this bound for policy search is an open question. However, we suggest

later in Section 5.3 a possible way to improve on this.

Concentration coefficients. Both bounds involve a concentration coefficient. They

can be compared as follows.

Theorem 4. We always have that:

∥

∥

∥

dµ,π∗

ν

∥

∥

∥

∞
≤ 1

1−γ
Cµ,ν . Also, if there always exists

a ν such that

∥

∥

∥

dµ,π∗

ν

∥

∥

∥

∞
< ∞ (by choosing ν = dµ,π∗

), there might not exist a ν such

that Cµ,ν <∞.

Proof. Consider the inequality of the first part. By using the definition of dµ,π∗
and

eventually the fact that dµ,π∗
≥ (1− γ)ν, we have

Cµ,ν = (1− γ)2
∞
∑

i=0

∞
∑

j=0

γi+j sup
π∈(∆A)S

∥

∥

∥

∥

µ(Pπ∗
)i(Pπ)

j

ν

∥

∥

∥

∥

∞

≥ (1− γ)2

∥

∥

∥

∥

∥

∥

∞
∑

i,j=0

γi+j µ(Pπ∗
)i+j

ν

∥

∥

∥

∥

∥

∥

∞

= (1− γ)

∥

∥

∥

∥

∥

∞
∑

i=0

γi
dµ,π∗

(Pπ∗
)i

ν

∥

∥

∥

∥

∥

∞

≥ (1− γ)2

∥

∥

∥

∥

∥

∞
∑

i=0

γi
µ(Pπ∗

)i

ν

∥

∥

∥

∥

∥

∞

= (1− γ)

∥

∥

∥

∥

dµ,π∗

ν

∥

∥

∥

∥

∞

.

Let us concentrate on the second part. Consider an MDP with N states and N actions,

with µ = δ1 being a dirac on the first state, and such that from here action a ∈ [1;N]
leads in state a deterministically. Write c = supπ∈AS ‖µPπ

ν
‖∞ the first term defining

Cµ,ν . For any π, we have µPπ ≤ cν. Thus, for any action a we have δa ≤ cν ⇒

1 ≤ cν(a). Consequently, 1 =
∑N

i=1 ν(i) ≥
1
c

∑N
i=1 1 ⇔ c ≥ N . This being true for

arbitrary N ∈ N, we get c = ∞ and thus Cµ,ν = ∞. ⊓⊔

The second part of this result tells that we may have

∥

∥

∥

dµ,π∗

ν

∥

∥

∥

∞
≪ Cµ,ν , which is

clearly in favor of LPS (and CPI, which involves the same concentration as LPS).

Error terms. Both bounds involve an error term. The terms ǫ (LPS) and e (API)

can be made arbitrarily small by increasing the computational effort (the time devoted

to run the algorithm and the amount of samples used), though nothing more can be said

in general without studying a specific algorithmic instance (e.g., type of local search for

LPS or type of regressor/classifier for API). The terms defining the “greedy complexity”

of policy spaces can be partially compared. Because they use different distributions that

can be compared (dν,π ≥ (1− γ)ν), we have for all policy spaces Π [8],

E ′
ν(Π) ≤

Eν(Π)

1− γ
.

However, this result does not take into account the fact that LPS (or CPI for the discus-

sion of [8]) works with stochastic policies while API works with deterministic policies.

This make these terms not comparable in general.

Experiments. To get a more precise picture of the relative practical performance of

API and LPS, we ran both algorithms on many randomly generated MDPs. In order to

assess their quality, we consider finite problems where the exact value function can be

computed. More precisely, we consider Garnet problems first introduced by [2], which

are a class of randomly constructed finite MDPs. They do not correspond to any specific

application, but are totally abstract while remaining representative of the kind of MDP

that might be encountered in practice. In our experiments, a Garnet is parameterized

by 4 parameters and is written G(nS , nA, b, p): nS is the number of states, nA is the

number of actions, b is a branching factor specifying how many possible next states

are possible for each state-action pair (b states are chosen uniformly at random and

transition probabilities are set by sampling uniform random b− 1 cut points between 0

and 1) and p is the number of features (for linear value function approximation). The

reward is state-dependent: for a given randomly generated Garnet problem, the reward

for each state is uniformly sampled between 0 and 1. Features are chosen randomly: Φ

is a nS×p feature matrix of which each component is randomly and uniformly sampled

between 0 and 1. The discount factor γ is set to 0.99 in all experiments.

The algorithms API and LPS need to repeatedly compute GΠ . In other words, they

must be able to make calls to an approximate greedy operator applied to the value vπ of

some policy π for some distribution ν or dν,π . To implement this operator, we compute

a noisy estimate of the value vπ with a uniform white noise u(ι) of amplitude ι, then

project this estimate onto H, the space spanned by the p chosen features, with respect

to the µ-quadratic norm (projection that we write ΠH,µ), and then applies the (exact)

greedy operator on this projected estimate. In a nutshell, one call to the approximate

greedy operator GΠ(π, µ, ǫ) amounts to compute G(ΠH,µ(vπ + u(ι))), with µ = ν

(API) or µ = dν,π (LPS).

In our experiments, we consider Garnet problems with ns ∈ {50, 100, 200} states,

with na ∈ {2, 5} actions, and branching factors in b ∈ {1, 2, 10}. For each of the 2×32

resulting possible combinations, we generated 30 i.i.d. random MDPs (Mi)1≤i≤30. For

each such MDP Mi, we make 30 i.i.d. runs of (i) API and (ii) LPS with a gradient step-

size of 0.1. For each run and algorithm, we compute the distance between the value of

the output policy and that of the optimal policy (∆j)1≤j≤30. Figure 1 displays learning

curves with statistics on these random variables. On this large set of problems, LPS

0 20 40 60 80 100
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

Er
ro

r

API

0 20 40 60 80 100
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

Er
ro

r

LPS

Fig. 1. Learning curves for API and LPS. MDPs are i.i.d. with the distribution of M1. Con-

ditioned on an MDP Mi, the error measures are i.i.d. with the distribution of ∆1. The central

line is an estimate of the overall average error E[∆1]. The three grey regions (from dark to light)

are estimates of the variability (across MDPs) of the average error Std[E[∆1|M1]], the average

(across MDPs) of the standard deviation of the error E[Std[∆1|M1]], and the variability (across

MDPs) of the standard deviation of the error Std[Std[∆1|M1]].

significantly outperforms API, both on average and in terms of variability (across runs

and problems). This confirms the importance of the better concentration coefficient of

LPS, since it is in theory the main advantage of LPS over API.

5.3 Practical and Theoretical Consequences of our Analysis

Finally, this section provides a few important consequences of our analysis and of The-

orem 3 in particular.

Rich policy and equivalence between local and global optimality. If the policy

space is very rich, one can easily show that any local optimum is actually global (this

result being a direct corollary of Theorem 3).

Theorem 5. Let ν > 0 be a distribution. Assume that the policy space is rich in the

sense that Eν(Π) = 0, and that π is an (exact) local optimum of Jν (ǫ = 0). Then, we

have vπ = v∗.

If this result is well-known in the case of tabular policies, it is to our knowledge new in

such a general case (acknowledging that Eν(Π) = 0 is a rather strong assumption).

Choice of the sampling distribution. Provided the result of Theorem 3, and as also

mentioned about CPI by [11] since it satisfies a similar bound, if one wants to optimize

the policy according to a distribution µ (that is, such that µ(v∗ − vπ) is small), then one

should optimize the fitness Jν with the distribution ν ≃ dµ,π∗
(so as to minimize the

coefficient

∥

∥

∥

dµ,π∗

ν

∥

∥

∥

∞
). Ideally, one should sample states based on trajectories following

the optimal policy π∗ starting from states drawn according to µ. This is in general not

realistic since we do not know the optimal policy π∗, but practical solutions may be

envisioned.

First, this means that one should sample states in the “interesting” part of the state

space, that is where the optimal policy is believed to lead from the starting distribution

µ. This is a natural piece of information that a domain expert should be able to provide.

Also, though we leave the precise study of this idea for future research, a natural prac-

tical approach for setting the distribution ν would be to compute a sequence of policies

π1, π2, . . . such that for all i, πi is a local optimum of π 7→ Jdν,πi−1
(π), that is of the

criterion weighted by the region visited by the previous policy πi−1. It may particularly

be interesting to study whether the convergence of such an iterative process leads to

interesting guarantees.

One may also notice that Theorem 3 may be straightforwardly written more gen-

erally for any policy. If π is an ǫ-local optimum of Jν over Π , then for any stochastic

policy π′ we have

µvπ′ ≤ µvπ +
1

1− γ

∥

∥

∥

∥

dµ,π′

ν

∥

∥

∥

∥

∞

(

Eν(Π)

1− γ
+ ǫ

)

.

Therefore, one can sample trajectories according to an acceptable (and known) con-

troller π′ so as to get state samples to optimize Jdν,π′ . More generally, if we know

where a good policy π′ leads the system to from some initial distribution µ, we can

learn a policy π that is guaranteed to be approximately as good (and potentially better).

A better learning problem? With the result of Theorem 3, we have a squared de-

pendency of the bound on the effective average horizon 1
1−γ

. For approximate dynamic

programming, it is known that this dependency is tight [5, 23]. At the current time, this

is an open question for policy search. However, we can improve the bound. We have

shown that the ǫ-local optimality of a policy π implies that it satisfies a relaxed Bellman

global optimality characterization, π ∈ GΠ(π, dν,π, ǫ), which in turns implies Theo-

rem 3. The following result, involving a slightly simpler relaxed Bellman equation, can

be proved similarly to Theorem 2:

If π ∈ GΠ(π, ν, ǫ) then µvπ′ ≤ µvπ +
1

1− γ

∥

∥

∥

∥

dµ,π′

ν

∥

∥

∥

∥

∞

(Eν(Π) + ǫ).

A policy satisfying this relaxed Bellman equation would have an improved dependency

on the horizon (1
1−γ

instead of 1
(1−γ)2). At the current time, we do not know whether

there exists an efficient algorithm for computing a policy satisfying π ∈ GΠ(π, ν, ǫ).
The above guarantee suggests that solving such a problem may improve over traditional

policy search and approximate dynamic programming approaches.

6 Conclusion

In the past years, local policy search algorithms have been shown to be practical vi-

able alternatives to the more traditional approximate dynamic programming field. The

derivation of global performance guarantees for such approaches, probably considered

as a desperate case, was to our knowledge never considered in the literature. In this

article, we have shown a surprising result: any Local Policy Search algorithm, as long

as it is able to provide an approximate local optimum of Jν(π), enjoys a global perfor-

mance guarantee similar to the ones of approximate dynamic programming algorithms.

However, this relies on a strong convex policy space assumption, not satisfied by most

standard local policy search algorithms. Weakening this hypothesis is an interesting

research direction (yet difficult, as convexity is at the core of our analysis).

In order to handle this issue, we proposed to apply AnyBoost.L1 to local policy

search. If it is a slight generalization of conservative policy iteration and is thus not a

new algorithm, our work provides an original connexion between local policy search,

boosting and approximate dynamic programming. Moreover, this suggests some open

problems. First, AnyBoost.L1 (and thus CPI) is a rather natural approach to handle

convex policy spaces. An interesting alternative would be to study the question of the

parameterization of a convex space. If we were able to come up with a non-trivial pa-

rameterization, we could use many of the LPS algorithms of the literature (for instance

actor-critic algorithms). Our analysis also suggests that it may be better to design algo-

rithms that looks for a policy π satisfying π ∈ GΠ(π, ν, ǫ) instead of searching for a

local maximum of Jν , as it leads to a better bound (linear dependency on the average

horizon). Working in that direction constitutes interesting future research. Last but not

least, our experiments on Garnet problems showed that LPS outperforms API. Deep-

ening the comparison of these approaches in larger problems constitutes natural future

work.

References

1. Antos, A., Szepesvari, C., Munos, R.: Learning near-optimal policies with Bellman-residual

minimization based fitted policy iteration and a single sample path. Machine Learning Jour-

nal 71, 89–129 (2008)

2. Archibald, T., McKinnon, K., Thomas, L.: On the Generation of Markov Decision Processes.

Journal of the Operational Research Society 46, 354–361 (1995)

3. Baxter, J., Bartlett, P.L.: Infinite-horizon gradient-based policy search. Journal of Artificial

Intelligence Research (JAIR) 15, 319–350 (2001)

4. Bertsekas, D., Tsitsiklis, J.: Neuro-Dynamic Programming. Athena Scientific (1996)

5. Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific (1995)

6. Bhatnagar, S., Sutton, R.S., Ghavamzadeh, M., Lee, M.: Incremental natural actor-critic al-

gorithms. In: Advances in Neural Information Processing Systems (NIPS) (2007)

7. Fern, A., Yoon, S., Givan, R.: Approximate Policy Iteration with a Policy Language Bias:

Solving Relational Markov Decision Processes. Journal of Artificial Intelligence Research

(JAIR) 25, 75–118 (2006)

8. Ghavamzadeh, M., Lazaric, A.: Conservative and Greedy Approaches to Classification-based

Policy Iteration. In: Conference on Artificial Intelligence (AAAI) (2012)

9. Heidrich-Meisner, V., Igel, C.: Evolution strategies for direct policy search. In: International

Conference on Parallel Problem Solving from Nature (PPSN X). pp. 428–437 (2008)

10. Kakade, S.: A Natural Policy Gradient. In: Advances in Neural Information Processing Sys-

tems (NIPS) (2001)

11. Kakade, S., Langford, J.: Approximately optimal approximate reinforcement learning. In:

International Conference on Machine Learning (ICML) (2002)

12. Kober, J., Peters, J.: Policy Search for Motor Primitives in Robotics. Machine Learning pp.

171–203 (2011)

13. Lagoudakis, M., Parr, R.: Least-squares policy iteration. Journal of Machine Learning Re-

search (JMLR) 4, 1107–1149 (2003)

14. Lagoudakis, M., Parr, R.: Reinforcement learning as classification: Leveraging modern clas-

sifiers. In: International Conference on Machine Learning (ICML) (2003)

15. Lazaric, A., Ghavamzadeh, M., Munos, R.: Finite-sample analysis of least-squares policy

iteration. Journal of Machine learning Research 13, 3041–3074 (2011)

16. Lazaric, A., Ghavamzadeh, M., Munos, R.: Analysis of a classification-based policy iteration

algorithm. In: International Conference on Machine Learning (ICML) (2010)

17. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient descent in

function space. Tech. rep., Australian National University (1999)

18. Munos, R.: Error bounds for approximate policy iteration. In: International Conference on

Machine Learning (ICML) (2003)

19. Munos, R.: Performance bounds in Lp norm for approximate value iteration. SIAM Journal

on Control and Optimization (2007)

20. Peters, J., Schaal, S.: Natural Actor-Critic. Neurocomputing 71, 1180–1190 (2008)

21. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley-Interscience (1994)

22. Scherrer, B., Gabillon, V., Ghavamzadeh, M., Geist, M.: Approximate Modified Policy Iter-

ation. In: International Conference on Machine Learning (ICML) (2012)

23. Scherrer, B., Lesner, B.: On the Use of Non-Stationary Policies for Stationary Infinite-

Horizon Markov Decision Processes. In: Advances in Neural Information Processing Sys-

tems (NIPS) (2012)

24. Sutton, R., Barto, A.: Reinforcement Learning, An introduction. The MIT Press (1998)

25. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy Gradient Methods for Re-

inforcement Learning with Function Approximation. In: Advances in Neural Information

Processing Systems (NIPS) (1999)

