AN EFFICIENT ONLINE LEARNING APPROACH FOR SUPPORT VECTOR REGRESSION

Abstract : In this paper, an efficient online learning approach is proposed for Support Vector Regression (SVR) by combining Feature Vector Selection (FVS) and incremental learning. FVS is used to reduce the size of the training data set and serves as model update criterion. Incremental learning can "adiabatically" add a new Feature Vector (FV) in the model, while retaining the Kuhn-Tucker conditions. The proposed approach can be applied for both online training & learning and offline training & online learning. The results on a real case study concerning data for anomaly prediction in a component of a power generation system show the satisfactory performance and efficiency of this learning paradigm.
Type de document :
Communication dans un congrès
second european conference of the prognostics and health management society 2014, Jul 2014, Nantes, France. 〈10.1142/9789814619998_0032〉
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal-supelec.archives-ouvertes.fr/hal-01090273
Contributeur : Yanfu Li <>
Soumis le : mercredi 3 décembre 2014 - 16:08:09
Dernière modification le : lundi 7 mai 2018 - 14:29:53
Document(s) archivé(s) le : samedi 15 avril 2017 - 02:27:14

Fichier

flins_jie.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Jie Liu, Valeria Vitelli, Redouane Seraoui, Enrico Zio. AN EFFICIENT ONLINE LEARNING APPROACH FOR SUPPORT VECTOR REGRESSION. second european conference of the prognostics and health management society 2014, Jul 2014, Nantes, France. 〈10.1142/9789814619998_0032〉. 〈hal-01090273〉

Partager

Métriques

Consultations de la notice

212

Téléchargements de fichiers

103