M. Martin, On-line support vector machines for function approximation, tech. rep., Software Department, 2002.

J. B. Gao, S. R. Gunn, C. J. Harriset, and M. Brown, A Probabilistic Framework for SVM Regression and Error Bar Estimation, Mach. Learn, vol.46, pp.1-3, 2002.

G. Baudat and F. Anouar, Feature vector selection and projection using kernels, Neurocomputing, vol.55, issue.1-2, pp.21-38, 2003.
DOI : 10.1016/S0925-2312(03)00429-6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Cauwenberghs and T. Poggio, Incremental and decremental support vector machine learning Fourteenth conference on advances in neural information processing systems, pp.409-415, 2001.

J. Liu, R. Seraoui, V. Vitelli, and E. Zio, Nuclear power plant components condition monitoring by probabilistic support vector machine, Annals of Nuclear Energy, vol.56, pp.23-33, 2013.
DOI : 10.1016/j.anucene.2013.01.005

URL : https://hal.archives-ouvertes.fr/hal-00790421

J. Kivinen, A. J. Smola, and R. C. Williamson, Online Learning with Kernels, IEEE Transactions on Signal Processing, vol.52, issue.8, pp.2165-2176, 2004.
DOI : 10.1109/TSP.2004.830991

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=