Self-adaptable hierarchical clustering analysis and differential evolution for optimal integration of renewable distributed generation
Rodrigo Mena, Martin Hennebel, Yan-Fu Li, Enrico Zio

To cite this version:

HAL Id: hal-01090342
https://hal-supelec.archives-ouvertes.fr/hal-01090342
Submitted on 3 Dec 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract

In a previous paper, we have introduced a simulation and optimization framework for the integration of renewable generators into an electrical distribution network. The framework searches for the optimal size and location of the distributed renewable generation units (DG). Uncertainties in renewable resources availability, components failure and repair events, loads and grid power supply are incorporated. A Monte Carlo simulation – optimal power flow (MCS-OPF) computational model is used to generate scenarios of the uncertain variables and evaluate the network electric performance with respect to the expected value of the global cost (ECG). The framework is quite general and complete, but at the expenses of large computational times for the analysis of real systems. In this respect, the work of the present paper addresses the issue and introduces a purposely tailored, original technique for reducing the computational efforts of the analysis. The originality of the proposed approach lies in the development of a new search engine for performing the minimization of the ECG, which embeds hierarchical clustering analysis (HCA) within a differential evolution (DE) search scheme to identify groups of similar individuals in the DE population and, then, ECG is calculated for selected representative individuals of the groups only, thus reducing the number of objective function evaluations. For exemplification, the framework is applied to a distribution network derived from the IEEE 13 nodes test feeder. The results show that the newly proposed hierarchical clustering differential evolution (HCDE) MCS-OPF framework is effective in finding optimal DG-integrated network configurations with reduced computational efforts.
Keywords: distributed renewable generation, uncertainty, simulation, optimization, differential evolution, hierarchical clustering analysis

ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>Differential evolution</td>
</tr>
<tr>
<td>DG</td>
<td>Distribution generation</td>
</tr>
<tr>
<td>EA</td>
<td>Evolutionary algorithm</td>
</tr>
<tr>
<td>EV</td>
<td>Electric vehicle</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic algorithm</td>
</tr>
<tr>
<td>HCA</td>
<td>Hierarchical clustering analysis</td>
</tr>
<tr>
<td>HCDE</td>
<td>Hierarchical clustering analysis differential evolution</td>
</tr>
<tr>
<td>MCS</td>
<td>Monte Carlo simulation</td>
</tr>
<tr>
<td>MS</td>
<td>Main supply</td>
</tr>
<tr>
<td>OPF</td>
<td>Optimal power flow</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle swarm optimization</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>ST</td>
<td>Storage device</td>
</tr>
<tr>
<td>W</td>
<td>Wind turbine</td>
</tr>
</tbody>
</table>

NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{i,i'}^{FD}$</td>
<td>the ampacity of the feeder (i,i') (A)</td>
</tr>
<tr>
<td>$B_{i,i'}$</td>
<td>susceptance of the feeder (i,i') (1/Ω)</td>
</tr>
<tr>
<td>BGT</td>
<td>available DG integration budget ($)</td>
</tr>
<tr>
<td>CCC</td>
<td>cophenetic correlation coefficient</td>
</tr>
<tr>
<td>CCC_{th}</td>
<td>cophenetic correlation coefficient threshold</td>
</tr>
<tr>
<td>CG</td>
<td>global cost ($/h$)</td>
</tr>
<tr>
<td>Cl</td>
<td>total fixed investment and operation cost ($)</td>
</tr>
<tr>
<td>ci_j</td>
<td>investment cost of the DG technology type j ($)</td>
</tr>
<tr>
<td>Co</td>
<td>operating costs of power generation and distribution ($/h$)</td>
</tr>
<tr>
<td>Coc</td>
<td>crossover coefficient $\in [0,1]$</td>
</tr>
<tr>
<td>Cop</td>
<td>opportunity cost for kWh not supplied ($/kWh$)</td>
</tr>
<tr>
<td>Cov_{j}^{PS}</td>
<td>variable operating cost of the power source j</td>
</tr>
<tr>
<td>$Cov_{i,i'}^{FD}$</td>
<td>variable operating cost of the feeder (i,i')</td>
</tr>
<tr>
<td>D^p</td>
<td>matrix of linkage distances between groups at step sp</td>
</tr>
<tr>
<td>\bar{D}^p</td>
<td>average of D^p</td>
</tr>
<tr>
<td>$d_{p,q}^p$</td>
<td>linkage distance between groups p and q</td>
</tr>
<tr>
<td>d_{CO}</td>
<td>cut off linkage distances</td>
</tr>
<tr>
<td>DG</td>
<td>set of available types of distribution generation technologies</td>
</tr>
<tr>
<td>dg</td>
<td>number of types of available distribution generation technologies</td>
</tr>
<tr>
<td>d_{min}</td>
<td>minimum linkage distance</td>
</tr>
<tr>
<td>$d_{NC=4}$</td>
<td>linkage distances to form at least four clusters</td>
</tr>
<tr>
<td>E</td>
<td>expected global cost ($/h$)</td>
</tr>
<tr>
<td>FC</td>
<td>the frequency of the feeder (i,i') (Hz)</td>
</tr>
<tr>
<td>FH</td>
<td>the flow of the feeder (i,i') (A)</td>
</tr>
<tr>
<td>$flow_{i,i'}$</td>
<td>the flow of the feeder (i,i') (A)</td>
</tr>
<tr>
<td>$f_{i,i'}$</td>
<td>the frequency of the feeder (i,i') (Hz)</td>
</tr>
<tr>
<td>$p_{i,i'}$</td>
<td>the power of the feeder (i,i') (W)</td>
</tr>
<tr>
<td>$p_{i,i'}^*$</td>
<td>the power of the feeder (i,i') (W)</td>
</tr>
<tr>
<td>PS</td>
<td>set of all types of power sources</td>
</tr>
<tr>
<td>PS_{j}</td>
<td>set of solar photovoltaic technologies</td>
</tr>
<tr>
<td>Ps</td>
<td>number of all types of available power generation technologies</td>
</tr>
<tr>
<td>$Q_{i,j}^{ST}$</td>
<td>level of charge in ST type j at node i (kJ)</td>
</tr>
<tr>
<td>$Q_{i,i'}$</td>
<td>the level of charge in ST type j at node (i,i') (kJ)</td>
</tr>
<tr>
<td>s_i</td>
<td>solar irradiance at node i $\in [0,1]$</td>
</tr>
<tr>
<td>SE_{j}^{ST}</td>
<td>specific energy of the active chemical in ST type j (kJ/kg)</td>
</tr>
<tr>
<td>ST</td>
<td>set of storage devices technologies</td>
</tr>
<tr>
<td>$T_{a,i}$</td>
<td>ambient temperature at node i (°C)</td>
</tr>
<tr>
<td>td</td>
<td>hour of the day (h)</td>
</tr>
<tr>
<td>th</td>
<td>lifetime of the project (h)</td>
</tr>
<tr>
<td>TL</td>
<td>total demand of power in the distribution network (kW)</td>
</tr>
<tr>
<td>TL_{th}</td>
<td>highest total demand of power in the distribution network (kW)</td>
</tr>
</tbody>
</table>
ECG_{\text{min}} \quad \text{minimum expected global cost ($/h)}

e_p \quad \text{energy price ($/kWh)}

e_{p_{\text{h}}} \quad \text{energy price at highest total demand ($/kWh)}

EV \quad \text{set of available types of EV}

F \quad \text{differential variation amplification factor} \in [0,2]

FD \quad \text{set of feeders}

G \quad \text{generations count index}

G_{\text{max}} \quad \text{maximum number of generations}

H \quad \text{matrix of HCA resultant linkage distances}

\bar{H} \quad \text{average of } H

h_{p,q} \quad \text{HCA resultant linkage distance between groups } p \text{ and } q

I_{\text{MPP}} \quad \text{current at maximum power point (A)}

I_{w_i} \quad \text{short circuit current (A)}

k_{i,i'} \quad \text{current0 temperature coefficient (mA/ºC)}

k_{v,i} \quad \text{voltage temperature coefficient (mV/ºC)}

L_i \quad \text{power demand at node } i \text{ (kW)}

l_{i,i'} \quad \text{length of feeder } (i,i') \text{ (km)}

L_S_i \quad \text{load shedding at node } i \text{ (kW)}

m_{c,i} \quad \text{mechanical state of PS type } j \text{ at node } i

m_{c_i,i'} \quad \text{mechanical state of feeder } (i,i')

MS \quad \text{set of types of MS spots}

ms \quad \text{number of types of MS spots}

M_{\text{MS}}^{ST} \quad \text{mass of active chemical in the battery type } j \text{ at node } i \text{ (kg)}

N \quad \text{set of nodes in the distribution network}

NS \quad \text{number of operating scenarios} \ #

n \quad \text{number of nodes in the distribution network}

NFE \quad \text{number of objective function evaluations}

N_{o_T} \quad \text{nominal cell operation temperature (ºC)}

NP \quad \text{population size}

op_{\text{E}V,i} \quad \text{operating state of EV type } j \text{ at node } i

p_{i}^{\text{ch}} \quad \text{hourly probability distribution of EV charging state per day}

p_{i}^{\text{d}} \quad \text{hourly probability distribution of EV disconnected state per day}

\tau_j \quad \text{time of residence in the operating state } op_{\text{E}V,i} \text{ of EV type } j \text{ at node } i \text{ (h)}

\tau_{H_{j,i}} \quad \text{upper bound of the discharging time interval of ST type } j \text{ at node } i \text{ (h)}

V_{oc,j} \quad \text{open circuit voltage (V)}

V_{\text{MPP}_j} \quad \text{voltage at maximum power point (V)}

V_{\text{NET}} \quad \text{voltage of the distribution network (kV)}

W \quad \text{set of wind turbines technologies}

w_{s_{i,j}} \quad \text{average wind speed of W type } j \text{ (m/s)}

w_{s_{i,j}}^{\text{ci}} \quad \text{cut-in wind speed of W type } j \text{ (m/s)}

w_{s_{i,j}}^{\text{co}} \quad \text{cut-out wind speed of W type } j \text{ (m/s)}

w_{s_i} \quad \text{wind speed at node } i

X_{i,i'}^{FD} \quad \text{reactance of feeder } (i,i') \text{ (} \Omega/\text{km})

\alpha_{\text{PV}_i} \quad \text{shape parameter of the Beta probability density function of the solar irradiance at node } i

\alpha_{\text{PV}_i}^{\text{ pv}} \quad \text{shape parameter of the Beta probability density function of the solar irradiance at node } i

\beta_{\text{PV}_i} \quad \text{shape parameter of the Beta probability density function of the solar irradiance at node } i

\delta_i \quad \text{voltage angle at node } i

\emptyset \quad \text{operating scenario}

\lambda_{\text{F}_i,j} \quad \text{failure rate of power source type } j \text{ (1/h)}

\lambda_{\text{F}_i,j}^{\text{f}} \quad \text{failure rate of feeder } (i,i') \text{ (1/h)}

\lambda_{\text{R}_i,j} \quad \text{repair rate of power source type } j \text{ (1/h)}

\lambda_{\text{R}_i,j}^{\text{r}} \quad \text{repair rate of feeder } (i,i') \text{ (1/h)}

\mu_{\text{L}_i} \quad \text{mean of the normal distribution of the power load at node } i \text{ (kW)}

\mu_{\text{MS}_i} \quad \text{normal distribution mean of the MS type } j \text{ at node } i \text{ (kW)}

\sigma_{\text{L}_i} \quad \text{standard deviation of the normal distribution of the power load at node } i \text{ (kW)}

\sigma_{\text{MS}_i} \quad \text{normal distribution standard deviation of the MS type } j \text{ at node } i \text{ (kW)}

\sigma_{\text{pv}_i} \quad \text{scale parameter of the Rayleigh distribution function of the wind speed at node } i

\tau_{i} \quad \text{maximum number of units of DG technology type } j \text{ available for integration}

\gamma \quad \text{set of operating scenarios} \ #

GreeK SYMBOLS
1 INTRODUCTION

Renewable distribution generation (DG) requires the selection of the different available technologies, and their sizing and allocation onto the power distribution network, considering the specific economic, operational and technical constraints [1-5]. This can become a complex optimization problem, depending on the size of the distribution network and the number of renewable DG technologies available, that can lead to combinatorial explosion [1, 3, 6-9]. Furthermore, for each renewable DG plan considered, the power flow problem needs to be solved to assess the response of the distribution network in terms of power and voltage profiles, available power usage, power demand satisfaction, economic performances, etc., with possibly significant computation times.

Heuristic optimization techniques belonging to the class of Evolutionary Algorithms (EAs), like honey bee mating [10], particle swarm optimization (PSO) [9, 11-13], differential evolution (DE) [14, 15] and genetic algorithms (GA) [2, 3, 16, 17], have been considered for the solution to this problem, since they can deal straightforwardly with non-convex combinatorial problems, discontinuous search spaces and non-differentiable objective functions [1, 9].

To improve the performance of EAs for the complex optimization problem of DG planning, we consider the integration of clustering [18-23]. This can be directed to the enhancement of the global and/or local searching ability of the algorithm, and amounts to identifying groups of similar individuals and applying different evolution operators to those of a same cluster (group) [18, 20-22], e.g. for random generation of new individuals in the neighborhood of cluster centroids [23], or multi-parents crossover over new randomly generated individuals spread in the global feasible space [19]. Even if convergence is improved, some of these methodologies increase temporarily the overall size of the population and, thus, the computational effort. In addition, the accuracy of the clusters structures in representing the distribution of individuals must be controlled for performing clustering conveniently.

The main original contribution of the work here presented, lies in the development of the clustering strategy in a controlled manner. The implementation of such clustering strategy is done within a Monte Carlo simulation and optimal power flow (MCS-OPF) model and differential evolution (DE) optimization framework [24] previously developed by the authors for the integration of renewable generators into an electrical distribution network: the framework searches for the optimal size and location of the distributed renewable generation units (DG) [25]. Optimality of the DG plan is sought with respect to the expected global cost (ECG). The introduction of the clustering is hierarchically (i.e., hierarchical clustering analysis, HCA, [26]) by a controlled way of reducing the number of individuals to be evaluated during the DE search, therefore, improving the computational efficiency. Henceforth, we call our method hierarchical clustering differential evolution (HCDE).

HCA is introduced to build a hierarchical structure of grouping individuals of the population that present closeness under the control of a specific linkage criterion based on defined distance metrics [26]. The HCA outcomes are the linkage distances at which the grouping actions take place, defining the different levels in the hierarchical structure.
Two control parameters are introduced in the HCA, the cophenetic correlation coefficient (CCC) and a percentile of the set of linkage distances in the hierarchical structure of the groups ($p_{d\text{tile}}$). The CCC is a similarity coefficient that measures how representative is the proposed grouping structure by comparing their linkage distances with the original distances between all the individuals in the population. In the hierarchical structure, the linkage distance given by $p_{d\text{tile}}$ sets the level at which the groups formed below it are considered to be ‘close enough’ to constitute independent clusters. The two parameters allow HCDE to adapt itself in each generation of the search, ‘deciding’ whether to perform clustering if the CCC is greater than or equal to a preset threshold (CCC_{th}) and cutting the hierarchical structure in independent clusters according to the linkage distance given by $p_{d\text{tile}}$. Then, the individual closest to the centroid of each cluster is taken as the feasible representative solution in the population that enters the evolution phase of the HCDE algorithm. Figure 1 summarizes schematically the structure of the proposed framework.

![Diagram of HCDE framework](image)

We test the approach on a case study based on the IEEE 13 nodes test feeder distribution network [27], completing the study with a sensitivity analysis to investigate the effects of the parameters controlling the clustering, namely CCC and $p_{d\text{tile}}$.
For practical ease of the presentation of the approach, in the next section we provide the basic elements of the model of the distribution network considered as case study and we briefly summarize the MCS-OPF model taken from [25]. In Section 3, we embed this in the HCDE for renewable DG selection, sizing and allocation. Finally, in Section 4 we present the numerical results of the case study and in Section 5 we draw some conclusions on the work performed.

2 RENEWABLE DG-INTEGRATED NETWORK MODEL

The operation of the renewable DG-integrated network is considered to be dictated by the location and magnitude of the power available in the different sources, the loads and the operating states of the components. Uncertainty is present in the states of operation of the components, due to stochasticity of degradation and failures, and in the behavior of the renewable energy sources. These uncertainties have a direct impact on the power available (from the DG units, main supply spots and/or feeders) to satisfy power demands, which are, in turn, also subject to fluctuations. Furthermore, if the distribution network is considered as a 'price taker' entity, the uncertain behavior of the power demand impacts directly over the energy price [4, 5, 28]. Consequently, an attentive modeling of the uncertainties in renewable DG planning is imperative for well-supported decision-making.

Monte Carlo simulation (MCS) has already been used to emulate the stochastic operating conditions and evaluate the performance of power distribution networks [19, 28, 29, 32]. In the present paper, non-sequential MCS is used to randomly sample the modeled uncertain variables for a specific renewable DG plan, without dependence on previous operating conditions, characterizing the network operation in terms of location and magnitudes of power available and loads. Then, the performance of the DG-integrated network is evaluated through the optimal power flow model.

2.1 Monte Carlo and Optimal Power Flow Simulation

In the proposed framework, the renewable DG technologies considered are of four types: solar photovoltaic (PV), wind turbines (W), electric vehicles (EV) and storage devices (ST); these are represented by the set DG that contains all the dg types of technologies. As for main power supply spots or transformers (MS), the set MS indicates the ms different types of MS considered in the network.

The DG-integrated network deployment is represented by the location and capacity size of the power sources, as indicated in matrix form in equation (1) below, where $\xi_{i,j}$ indicates the number of units of main supply spots or DG technology j that are allocated at a node i:

$$
\Xi = \begin{bmatrix}
\xi_{1,j} & \cdots & \xi_{l,j} & \xi_{l,ms} & \xi_{l,ms+1} & \cdots & \xi_{l,ms+j} & \cdots & \xi_{l,ms+dg} \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
\xi_{i,j} & \cdots & \xi_{j,j} & \xi_{i,ms} & \xi_{i,ms+1} & \cdots & \xi_{i,ms+j} & \cdots & \xi_{i,ms+dg} \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
\xi_{n,j} & \cdots & \xi_{n,j} & \xi_{n,ms} & \xi_{n,ms+1} & \cdots & \xi_{n,ms+j} & \cdots & \xi_{n,ms+dg}
\end{bmatrix}
= [\Xi_{MS} | \Xi_{DG}] \quad \forall \xi_{i,j} \in \mathbb{Z}^+, i \in N, j \in PS
$$

where, \(N \) and \(PS = \{ MS \cup DG \} \) are the set of nodes in the network and the set of all power sources, whose cardinalities are \(n \) and \(ps = ms + dg \), respectively.

The set of feeders \(FD \) is defined by all the pairs of nodes \((i,i')\) connected by a distribution line \(\forall (i,i') \in N \times N \).

The considered uncertain conditions that determine the operation of the DG-integrated network are accounted for using different stochastic models, as summarized in Table 1. The interested reader can consult [25] for further details.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Nomenclature</th>
<th>States and Units</th>
<th>Model</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hour of the day</td>
<td>(t_d)</td>
<td>(h)</td>
<td>Discrete uniform distribution</td>
<td>([1, 24])</td>
</tr>
<tr>
<td>Mechanical state</td>
<td>(mc_{i,j})</td>
<td>(0): under repair, (1): operating</td>
<td>Two-state Markov</td>
<td>(\lambda^R_{j}, \lambda^F_{j})</td>
</tr>
<tr>
<td>Main power supply</td>
<td>(p_{j}^{MS})</td>
<td>(kW)</td>
<td>Truncated normal distribution</td>
<td>(0 \leq p_{j}^{MS} \leq p_{j}^{MS}_{cap})</td>
</tr>
<tr>
<td>Solar irradiance</td>
<td>(s_i)</td>
<td>[0,1]</td>
<td>Beta distribution</td>
<td>(\alpha_{PV}^{j}, \beta_{PV}^{j})</td>
</tr>
<tr>
<td>Wind speed</td>
<td>(ws_{j})</td>
<td>(m/s)</td>
<td>Rayleigh distribution</td>
<td>(\sigma_{W}^{j})</td>
</tr>
<tr>
<td>EV operating state</td>
<td>(op_{j}^{EV})</td>
<td>(-1): charging, (0): disconnected, (1): discharging</td>
<td>‘Block groups’</td>
<td>(t_d)</td>
</tr>
<tr>
<td>ST level of charge</td>
<td>(Q_{ST}^{i,j})</td>
<td>(kJ)</td>
<td>Uniform distribution</td>
<td>([0, SE_{j}^{ST} \times M_{ST}^{j})]</td>
</tr>
<tr>
<td>Nodal power demand</td>
<td>(L_i)</td>
<td>(kW)</td>
<td>Daily nodal load profiles, hourly normally distributed load. Truncated normal distribution</td>
<td>(0 \leq L_i \leq \infty)</td>
</tr>
</tbody>
</table>

where \(\forall (i,i') \in N, j \in PS, (i,i') \in FD \), \(\lambda^F_{j} \) and \(\lambda^R_{j} \) (1/h) are the failure and repair rates of the power source \(j \), respectively, \(\lambda^F_{i,j} \) and \(\lambda^R_{i,j} \) (1/h) are the failure and repair rates of the feeder \((i,i')\), respectively, \(\mu^{MS}_{j} \) and \(\sigma^{MS}_{j} \) are the normal distribution mean and standard deviation associated to the main supply \(j \) at node \(i \), \(P_{j}^{MS}_{cap} \) is the maximum capacity of the transformer \(j \) (kW), \(\alpha_{PV}^{j} \) and \(\beta_{PV}^{j} \) are the parameters of the Beta probability density function of the solar irradiance at node \(i \), \(\sigma_{W}^{j} \) is the scale parameter of the Rayleigh distribution function of the wind speed at node \(i \), \(SE_{j}^{ST} \) (kJ/kg) is the specific energy of the active chemical in the battery type \(j \), \(M_{ST}^{j} \) (kg) is the mass of active chemical in the battery type \(j \) at node \(i \), \(\mu^{j}(t_d) \) and \(\sigma^{j}(t_d) \) are the hourly mean and standard deviation of the normal distribution of the power load at node \(i \).

Concerning the hour of the day \(t_d \) (h), sampled from a discrete uniform distribution \(U(1,24) \), the night interval is defined between 22.00 and 06.00 hours. If the value of \(t_d \) falls in the night interval, there is no solar irradiation.

The resulting realization of one operational scenario of duration \(ts \) (h), for the given DG plan denoted by \(\{ FD, \Xi \} \), consists in the random sampling of each uncertain variable (Table 1), here indicated by the vector \(\xi \) below:
\[\mathcal{O} = [t_{ij}, mc_{ij}, \xi_{ij}, L_i, P_{i,j}^{MS}, s_i, ws_i, op_{i,j}^{EV}, Q_{i,j}^{ST}] \]

To evaluate the performance of the distribution network the OPF model receives as input the location and magnitude of the available power in the power sources and demanded at the loads, which are set by the operating conditions defined by \{FD, \Xi\} and \mathcal{O}. The nodal power loads \(L_i \) are directly sampled, whereas the available power in the power sources (MS and DG) depends on the uncertain variables that represent the behavior of the energy sources, the specific technical characteristics of each type of technology and the mechanical states. The available power in each type of power source considered is modeled by the functions summarized in Table 2, for a given configuration \{FD, \Xi\}, operating scenario \(\mathcal{O} \) and a generic node \(i \).

Table 2. Available power functions of the power sources (PS) [25, 29, 30]

<table>
<thead>
<tr>
<th>PS type (j)</th>
<th>Parameters</th>
<th>Available power function (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS (\Xi)</td>
<td>-</td>
<td>(P_{a,j}^{MS,\Xi} = \xi_{ij}mc_{ij}P_{i,j}^{MS,\Xi}) (3)</td>
</tr>
<tr>
<td>PV (\Xi)</td>
<td>(T_{v,i}) (N_{oT}) (I_{w,i}) (V_{oc,i}) (k_{v,i}, k_{j}) (V_{MPP,i}) (I_{MPP,i})</td>
<td>(P_{a,j}^{PV,\Xi} = \xi_{ij}mc_{ij}FFV_{j,i}^{\Xi}I_{j,i}^{\Xi}) / 1,000 (4)</td>
</tr>
<tr>
<td>W (\Xi)</td>
<td>(ws_{s,i}) (ws_{a,i}) (ws_{c,i}) (P_{w}^{i})</td>
<td>(P_{a,j}^{W,\Xi} = \xi_{ij}mc_{ij}^{\Xi} \times \begin{cases} P_{w}^{i} & \text{if } ws_{s,i} \leq ws_{s,i}^{\Xi} < ws_{a,i} \ P_{w}^{i} & \text{if } ws_{a,i} \leq ws_{s,i}^{\Xi} < ws_{c,i} \ 0 & \text{otherwise} \end{cases}) (5)</td>
</tr>
<tr>
<td>EV (\Xi)</td>
<td>(I_{op}^{EV,\Xi}) (P_{e}^{i})</td>
<td>(P_{a,j}^{EV,\Xi,\Xi} = \xi_{ij}mc_{ij}^{\Xi}op_{i,j}^{EV,\Xi}P_{e}^{i}) (\forall t \in [0, t_{op}^{EV,\Xi}]) (6)</td>
</tr>
<tr>
<td>ST (\Xi)</td>
<td>(P_{R}^{ST})</td>
<td>(P_{a,j}^{ST,\Xi} = \xi_{ij}mc_{ij}^{\Xi}P_{R}^{ST}) (\forall t \in [0, t_{R}]) (7)</td>
</tr>
</tbody>
</table>

In Table 2, \(P_{a,j}^{PS,\Xi} \) (kW), \(\xi_{ij} \) and \(mc_{ij}^{\Xi} \) denote the available power, the units and the mechanical state of the power source of type \(j \) allocated at node \(i \). For solar photovoltaic technologies \(j \in PV \), the parameter \(T_{v,i} \) (ºC) is the ambient temperature at node \(i \), \(N_{oT} \) (ºC) is the nominal cell operation temperature, \(I_{w,i} \) (A) is the short circuit current, \(V_{oc,i} \) (V) is the open circuit voltage, \(k_{v,i} \) (mV/ºC) is the voltage temperature coefficient, \(k_{j} \) (mA/ºC) is the current temperature coefficients and \(V_{MPP,i} \) (V) and \(I_{MPP,i} \) (A) are the voltage and current at maximum power point, respectively. For wind turbines of types \(j \in W \), \(ws_{s,i} \), \(ws_{a,i} \) and \(ws_{c,i} \) (m/s) are the cut-in, rated and cut-out wind speeds, respectively, and \(P_{R}^{W} \) (kW) is the rated power of the turbine. For electric vehicles \(j \in EV \), \(t_{op}^{EV,\Xi} \) (h) is the
time of residence in the operating state \(o_{P_{ij}^{EV}} \) and \(P_{k_j}^{EV} \) (kW) is the rated power. For storage devices \(j \in ST \), \(t_{k_j}^{a} \) (h) is the upper bound of the discharging time interval and \(P_{k_j}^{st} \) (kW) is the rated power.

Under the operating conditions set forth, the given configuration of the renewable DG-integrated network \{FD, \Xi\} and the scenario \(\varnothing \), the OPF objective is the minimization of the operating cost associated to the generation and distribution of power, considering the revenues per kWh sold. Power flow analysis is performed by DC modeling, neglecting power losses and assuming the voltage throughout the network as constant, linearizing the classic non-linear power flow formulation by accounting solely for active power flows [31, 32]. The present formulation of the DC optimal power flow problem is:

\[
\begin{align*}
\min \ Co^\varnothing (Pu, A\delta) &= \sum_{i \in N} \sum_{j \in PS} (Cov_j^{PS} - ep^j)Pu_{ij} + \sum_{(i') \in FD} Cov_{ij}^{FD} |B_{ij} (\delta_i - \delta_{i'})| + (Cop + ep^\varnothing) \sum_{i \in N} LS_i \\
\text{s.t.} \quad &L_i^g - LS_i - \sum_{j \in PS} Pu_{i,j} - \sum_{i \in N} mc_{ij} B_{ij} (\delta_i - \delta_{i'}) = 0 \\
&0 \leq Pu_{ij} \leq Pa_{ij}^{PS,\varnothing} \\
&|B_{ij} (\delta_i - \delta_{i'})| \leq V_{NET} A_{ij}^{FD}
\end{align*}
\]

where \(\forall i, i' \in N, j \in PS, (i,i') \in FD \) and the operating scenario \(\varnothing \), \(Co^\varnothing \) ($/h) is the operating cost of the total power supply and distribution, \(Cov_j^{PS} \) ($/kWh) is the variable operating cost of the power source \(j \), \(ep^\varnothing \) ($/kWh) is the energy price, \(Pu_{ij} \) (kW) is the used power from the source of type \(j \) at node \(i \), \(Cov_{ij}^{FD} \) ($/kWh) and \(B_{ij} \) (1/Ω) are the variable operating cost and the susceptance of the feeder \((i,i') \), respectively, \(\delta_i \) is the voltage angle at node \(i \), \(Cop \) ($/kWh) is the opportunity cost for kWh not supplied, \(V_{NET} \) (kV) is the nominal voltage of the network and \(A_{ij} \) (A) is the ampacity of the feeder \((i,i') \). The load shedding \(LS_i \) (kW) is defined as the amount of load disconnected at node \(i \) to alleviate congestions in the feeders and/or balance the demand of power with the available power supply.

The distribution network is considered as a ‘price taker’ entity, assuming a correlation between the total demand of power and the energy price \(ep \) ($/kWh). Then, the energy price is calculated from an intermediate correlation proposed by [4, 5, 28]:

\[
ep(TL) = ep_h \left(-0.38 \left(\frac{TL(t_d)}{TL_h} \right)^2 + 1.38 \frac{TL(t_d)}{TL_h} \right)
\]

where, \(ep_h \) is the energy price corresponding to the highest value of total demand considered \(TL_h \). The total demand of power \(TL(t_d) \) at the hour of the day \(t_d \) is the summation of all the nodal loads \(L_i(t_d) \) (Table 1). The constraint given by the equation (9) corresponds to the power balance equation at node \(i \), whereas equations (10) and (11) represent the bounds of the power generation and technical limits of the feeders, respectively.
One realization of the MCS-OPF consists of the sampling of NS operating scenarios ϑ regarded as the set $\vartheta = \{ \vartheta_1, \vartheta_2, \ldots, \vartheta_{NS} \}$ for each of which the optimal power flow problem is solved, giving in output the values of the minimum operating cost of the total power supply and distribution $Co^r = \{ Co^h_1, \ldots, Co^h_{\vartheta}, \ldots, Co^h_{NS} \}$.

2.2 Expected Global Cost ECG

The proposed renewable DG-integrated network solutions are evaluated with respect to the expected global cost ECG. The global cost CG is composed by two terms: the fixed investment and operation (maintenance) costs Ci ($\), which are prorated hourly over the life of the project th (h), and the operating costs Co^r ($$/h) that is the outcome of the MCS-OPF (equation (8)) described in the precedent Section 2.1. Thus, the global cost function for a scenario ϑ is given by:

$$ CG^\vartheta = Ci + Co^\vartheta \quad \forall \vartheta \in \vartheta $$

(13)

$$ Ci = \frac{1}{th} \sum_{i \in N} \sum_{j \in DG} \xi_{i,j} c_{i,j} $$

(14)

where, $c_{i,j}$ ($) is the investment cost of the DG technology type j.

Then, the global cost $CG^\vartheta = \{ CG^{h_1}, \ldots, CG^{h_j}, \ldots, CG^{h_{NS}} \}$ is considered as realizations of the probability mass function of CG, and from multiple realizations the expected value ECG^r can be obtained.

3 RENEWABLE DG SELECTION, SIZING AND ALLOCATION

The aim of the proposed simulation and optimization framework is to find the optimal plan of integration of renewable DG in terms of selection, sizing and allocation of generation units from different technologies available (PV, W, EV and ST). The corresponding decision variables are contained in Ξ^{BG} of the configuration matrix Ξ defined in equation (1).

3.1 Optimization Problem Formulation

Considering a network configuration (FD, Ξ) and a set of randomly generated scenarios ϑ, the optimization problem is formulated as follows:

$$ \min \ ECG^r $$

(15)

s.t.

$$ \forall \xi_{i,j} \in Z^r $$

(1)

$$ \sum_{i \in N} \sum_{j \in DG} \xi_{i,j} c_{i,j} \leq BGT $$

(16)

$$ \sum_{i \in N} \xi_{i,j} \leq \tau_j $$

(17)

$$ \text{MCS-OPF}\left((FD, \Xi), \vartheta \right) $$

(18)

The meaning of each constraint $\forall i, i' \in N, j \in PS, (i, i') \in FD, \tau_j \in Z^+$ is:
(1): the decision variable ξ_{ij} is a non-negative integer number.

(16): the total investment and fixed operation and maintenance costs must be less than or equal to the available budget BGT.

(17): the total number of renewable DG units of each technology j to be allocated must be less than or equal to the maximum number of units available for integration τ_j.

(18): all the equations (8)-(11) of MCS-OPF must be satisfied.

3.2 Hierarchical Clustering Differential Evolution (HCDE)

The complex combinatorial optimization problem of DG planning under uncertainties described above is solved by integrating DE with HCA to reduce computational efforts, whereby the evaluation of the objective function is performed by the MCS-OPF presented in Section 3.

DE is a population-based and parallel, direct search method, shown to be one of the most efficient evolutionary algorithms to solve complex optimization problems [19, 21, 24]. The implementation of the original version of DE involves two main phases: initialization and evolution, summarized below for completeness of the paper [24]:

Initialization

- Set values of parameters:
 - NP: population size
 - G_{max}: maximum number of generations
 - Coc: cross over coefficient $\in [0,1]$
 - F: differential variation amplification factor $\in [0,2]$
- Generate randomly NP individuals X (decision vectors) within the feasible space, to form the initial population $POP^0 = \{X_1^0, \ldots, X_k^0, \ldots, X_{NP}^0\}$.
- Evaluate the objective function $f(X) = y$ for each individual

Evolution loop

- Set generations count index $G = 1$
- Set $POP^G = POP^0$
- While $G \leq G_{\text{max}}$ (stopping criterion)

Trial loop

For each individual X_k^G in POP^G, $\forall k \in \{1, \ldots, NP\}$:

- Sample from the uniform distribution three integer indexes r_1, r_2, r_3 with $k \neq r_1 \neq r_2 \neq r_3$ and choose the corresponding three individuals $X_{r_1}^G, X_{r_2}^G, X_{r_3}^G$
- Mutation: generate a mutant individual V_k^G according to:
 \[V_k^G = X_{r_1}^G + F(X_{r_2}^G - X_{r_3}^G) \] \hspace{1cm} (19)
- Crossover: initialize a randomly generated vector U_k^G, whose dimensionality dim is the same as that of X_k^G and each coordinate $u_{k,i}^G$ follows a uniform distribution with outcome in $[0,1] \forall i \in \{1, \ldots, dim\}$. In addition, generate randomly an integer index $ri \in \{1, \ldots, dim\}$ from a uniform distribution to ensure that at
least one coordinate from V_k^G is exchanged to form a trial individual X_k^{GT}, whose coordinates are defined as follows:

$$
x_{k,i}^{GT} = \begin{cases}
 v_{k,i}^G & \text{if } u_{k,i}^G \leq Cco \text{ or } i = ri \\
 x_{k,i}^G & \text{if } u_{k,i}^G > Cco \text{ and } i \neq ri
\end{cases}
$$

(20)

- **Selection:** evaluate the objective function for the trial individual $f(X_k^{GT})$; if $f(X_k^{GT}) < f(X_k^G)$ (minimization), then X_k^{GT} replaces X_k^G in the population POP^G, otherwise X_k^G is retained

- Set $G = G + 1$

- Once the stopping criterion is reached, sort the individuals in $POP^{G_{max}}$ in descending order according to their values of the objective function and return $X_{i^{G_{max}}}^G$.

The original version of DE keeps the population size NP constant, making the computational performance dependent mainly on the number of objective function evaluations carried out during the evolution phase of the algorithm. Then, the integration of HCA into DE is aimed at the reduction of the number of individuals that enter the evolution loop in each generation so as to decrease the number of objective function evaluations.

HCA links individuals or groups of individuals which are similar with respect to a specific property, translated into a metric of distance, obtaining a hierarchical structure. In practice, we use an agglomerative procedure which in $sp = NP-1$ steps fuses the closest pair or individuals or groups of individuals through a linkage function, e.g. single linkage (nearest neighbor distance), complete linkage (furthest neighbor), average linkage, among others, until the complete hierarchical structure is built. The base hierarchical clustering algorithm used in this study can be expressed as follows [26]:

Step 0: Given a population $POP = \{X_1, ..., X_k, ..., X_{NP}\}$, form the set of singleton groups $O = \{O_p = \{X_i\}\}, \forall p = k \in \{1, ..., NP\}$ and calculate the linkage distances between all the NP groups using the average as linkage function and the Euclidean distance as metric:

$$
D^1 = \begin{bmatrix}
 d_{1,2}^1 & \ldots & d_{1,q}^1 & \ldots & d_{1,NP}^1 \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 d_{p,q}^1 & \ldots & d_{p,NP}^1 & \ldots & \vdots \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 d_{NP-1,NP}^1 \\
\end{bmatrix}
$$

with

$$
d_{p,q}^1 = \frac{\sum_{x_{kp} \in O_p, x_{kq} \in O_q} (X_{kp} - X_{kq})^2}{|O_p||O_q|}
$$

(21)

where, $d_{p,q}^1$ is the average of the Euclidean distances between all the individuals X_i belonging to the groups O_p and O_q, respectively.

Step 1: Fuse the first pair of groups O_p and O_q, for which $d_{p,q}^1$ is the minimum distance $\min(D^1)$ and form a new group $O_{NP+1} = \{O_p \cup O_q\}$.

Update the set of groups O replacing O_p and O_q by O_{NP+1}, and calculate the linkage distances D^2 between all the $NP-I$ groups in O using (21).
Step 2: Fuse the second pair of groups \(O_{p'} \) and \(O_{q'} \) for which \(d_{p',q'}^2 \) is the minimum distance \(\min(D^2) \), and form a new group \(O_{np-2} = \{ O_{p'} \cup O_{q'} \} \).

As in the preceding step, update the set of groups \(O \) and calculate the linkage distances \(D^3 \) between all the \(NP-2 \) groups in \(O \) using (21).

\[\ldots \]

Step NP-1: Fuse the last pair of groups with linkage distance \(d_{p',q'}^{NP-1} \), forming the last group \(O_{2NP-1} = \{ O_{p'} \cup O_{q'} \} \) that contains all the individuals \(X \).

The outcoming hierarchical (or tree) structure can be reported as a sorted table containing the \(NP-1 \) linkage distances relative to each pairing action of individuals/groups and be graphically illustrated as a dendrogram. Table 3 and Figure 2 present, respectively, the resultant linkage distances and dendrogram obtained from an example set of \(NP = 8 \) two-dimensional individuals \(X \) using the above introduced HCA algorithm.

![Figure 2. Example dendrogram for average linkage HCA](image)

<table>
<thead>
<tr>
<th>Step (sp)</th>
<th>Group</th>
<th>Groups linked</th>
<th>Linkage distance (d_{p',q'}^{NP})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(O_1)</td>
<td>({ O_2 \cup O_3 } = { { X_2 } \cup { X_3 } })</td>
<td>(d_{2,6}^1)</td>
</tr>
<tr>
<td>2</td>
<td>(O_{10})</td>
<td>({ O_1 \cup O_2 } = { { X_1 } \cup { X_2 } })</td>
<td>(d_{3,4}^2)</td>
</tr>
<tr>
<td>3</td>
<td>(O_{11})</td>
<td>({ O_1 \cup O_2 } = { { X_1 } \cup { X_2 } })</td>
<td>(d_{1,7}^3)</td>
</tr>
<tr>
<td>4</td>
<td>(O_{12})</td>
<td>({ O_3 \cup O_4 } = { { X_3 } \cup { X_4 } })</td>
<td>(d_{5,8}^4)</td>
</tr>
<tr>
<td>5</td>
<td>(O_{13})</td>
<td>({ O_4 \cup O_5 } = { { X_4 } \cup { X_5 } })</td>
<td>(d_{9,11}^5)</td>
</tr>
<tr>
<td>6</td>
<td>(O_{14})</td>
<td>({ O_6 \cup O_7 } = { { X_6 } \cup { X_7 } })</td>
<td>(d_{10,12}^6)</td>
</tr>
<tr>
<td>7</td>
<td>(O_{15})</td>
<td>({ O_3 \cup O_{14} } = { { X_3 }, { X_5 }, { X_6 }, { X_7 } })</td>
<td>(d_{13,14}^7)</td>
</tr>
</tbody>
</table>

As stated above, HCA builds the hierarchical structure through a linkage function introducing in each grouping action a larger or smaller degree of distortion with respect to the original distances between (ungrouped) individuals. The measurement of this distortion is important and the cophenetic correlation coefficient (CCC) is...
introduced to evaluate how representative is the hierarchical structure proposed by the HCA. The CCC can be obtained from equations (22) and (23) below [26].

\[
ccc = \frac{\sum_{p \neq q} (d_{p,q} - \bar{D}) (h_{p,q} - \bar{H})}{\sqrt{\sum_{p \neq q} (d_{p,q} - \bar{D})^2 \sum_{p \neq q} (h_{p,q} - \bar{H})^2}} \quad \forall p,q \in \{1,...,NP\}
\]

(22)

\[
H = \begin{bmatrix}
 h_{1,2} & \cdots & h_{1,q} & \cdots & h_{1,NP} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 h_{p,q} & \cdots & h_{p,NP} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 h_{NP-1,NP}
\end{bmatrix}
\]

with \(h_{p,q} = d_{p,q}^{sp} \times sp = \{ \min (sp) / X_p \land X_q \in O_{NP+sp} \} \times \forall p,q \in \{1,...,NP\}, p',q' \in \{1,...,2NP-1\}, sp \in \{1,...,NP-1\} \)

(23)

where, \(\bar{D} \) is the mean of the original Euclidean distances \(d_{p,q} \) between all the individuals, \(h_{p,q} \) is the linkage distance \(d_{p,q}^{sp} \) where the pair of individuals \(X_p \) and \(X_q \) become members of the same group and \(\bar{H} \) is the mean of the resultant linkage distances \(h_{p,q} \) between all the individuals.

Recalling that the aim of nesting HCA into DE is to increase the computational performance by decreasing the number of individuals to be evaluated in each generation \(G \), the presetting of a threshold \(CCC_{th} \) for the CCC value allows defining the level of representativeness required to the hierarchical structure proposed. If the \(CCC^G \) obtained from applying HCA over the corresponding population \(POP^G \) is higher than or equal to the threshold \(CCC_{th} \), the built hierarchical structure is considered an acceptable representation of the original distances amongst the individuals and the selection of a particular partition of the sets of groups can be performed, i.e., the determination of a specific number of clusters. Conversely, if \(CCC^G \) is less than \(CCC_{th} \), the hierarchical structure is considered not representative enough since it introduces unacceptable distortion that may affect the global searching process in the HCDE.

Whether the hierarchical structure is accepted, the clustering process itself takes place. As before stated, the HCA outcome linkage distances \(d_{p,q}^{sp} \) define each level (height) at which a pairing action takes place. If the hierarchical structure is ‘cut off’ at a specific linkage distance \(d_{CO} \), all the groups that are formed below the level \(d_{CO} \) become independent clusters. In each generation \(G \) of HCDE, a \(d_{CO} \) relative to the HCA outcome linkage distances for the corresponding \(POP^G \), is determined from a preset percentile \(p_{d\text{tile}} \) of the linkage distances between the minimum \(d_{p,q}^{sp} \) that correspond to the first pairing action and the distance to form at least four clusters needed to perform the mutation process in the HCDE. Thus, \(d_{CO} \) can be obtained from equations (24) and (25). Figure 3 shows the cutoff distance representation for the example aforementioned, for which the formed clusters are \(\{O_5,O_6\}, \{O_1\}, \{O_7\}, \{O_5,O_4\}, \{O_3\} \) and \(\{O_8\} \).
The integration of HCA into DE and the definition of the parameters CCC_{th} and $p_{d\text{\%tile}}$ allow HCDE adaptation at each generation, i.e., deciding whether to perform HCA and determining the clusters to be taken. Then, the individuals closest to the centroids of the formed clusters are considered as the representatives of the group which they belong to and are taken in a reduced population that enters the evolution phase of the HCDE. The proposed HCDE algorithm is summarized schematically in the flowchart of Figure 4.
Figure 4. Flowchart of the framework

4 CASE STUDY

We consider a modification of the IEEE 13 nodes test feeder distribution network [27] with the original spatial structure but neglecting the feeders of length zero, the regulator, capacitor and switch. The resulting network has 11 nodes and presents the relevant characteristics of interest for the analysis, e.g. the presence of a main power supply spot and comparatively low and high spot, and distributed load values [33].
4.1 Distribution Network description

The distribution network presents a radial structure of $n = 11$ nodes as shown in Fig. 1. The nominal voltage V_{NET} is 4.16 (kV), kept constant for the resolution of the DC optimal power flow problem.

![Radial 11-nodes distribution network](image)

Figure 5. Radial 11-nodes distribution network

Table 4 contains the technical characteristics of the different types of feeders considered: specifically, the indexes of the pairs of nodes (i,i') that they connect, their length l, reactance X^{FD}, ampacity A^{FD} and failure and repair rates.

<table>
<thead>
<tr>
<th>Type</th>
<th>node i</th>
<th>node i'</th>
<th>l (km)</th>
<th>X^{FD} (Ω/km)</th>
<th>A^{FD} (A)</th>
<th>λ^F (1/h)</th>
<th>λ^R (1/h)</th>
<th>Cov ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1</td>
<td>2</td>
<td>0.610</td>
<td>0.371</td>
<td>730</td>
<td>3.333e-04</td>
<td>0.198</td>
<td>1.970e-02</td>
</tr>
<tr>
<td>T2</td>
<td>2</td>
<td>3</td>
<td>0.152</td>
<td>0.472</td>
<td>340</td>
<td>4.050e-04</td>
<td>0.162</td>
<td>9.173e-03</td>
</tr>
<tr>
<td>T3</td>
<td>2</td>
<td>4</td>
<td>0.152</td>
<td>0.555</td>
<td>230</td>
<td>3.552e-04</td>
<td>0.185</td>
<td>6.205e-03</td>
</tr>
<tr>
<td>T1</td>
<td>6</td>
<td>2</td>
<td>0.091</td>
<td>0.371</td>
<td>730</td>
<td>3.333e-04</td>
<td>0.198</td>
<td>6.205e-03</td>
</tr>
<tr>
<td>T3</td>
<td>4</td>
<td>5</td>
<td>0.152</td>
<td>0.252</td>
<td>329</td>
<td>4.048e-04</td>
<td>0.164</td>
<td>8.904e-03</td>
</tr>
<tr>
<td>T6</td>
<td>8</td>
<td>9</td>
<td>0.091</td>
<td>0.555</td>
<td>230</td>
<td>3.552e-04</td>
<td>0.185</td>
<td>1.970e-02</td>
</tr>
<tr>
<td>T7</td>
<td>6</td>
<td>11</td>
<td>0.305</td>
<td>0.371</td>
<td>730</td>
<td>3.333e-04</td>
<td>0.198</td>
<td>1.970e-02</td>
</tr>
<tr>
<td>T5</td>
<td>8</td>
<td>9</td>
<td>0.091</td>
<td>0.555</td>
<td>230</td>
<td>3.552e-04</td>
<td>0.185</td>
<td>9.173e-03</td>
</tr>
<tr>
<td>T7</td>
<td>8</td>
<td>10</td>
<td>0.244</td>
<td>0.318</td>
<td>175</td>
<td>3.552e-04</td>
<td>0.185</td>
<td>6.205e-03</td>
</tr>
</tbody>
</table>

The nodal power demands are built from the load data given in [27] and reported in Figure 6 as daily profiles, normally distributed on each hour t_d with mean μ^l and standard deviation σ^l [29, 34].
The technical parameters, failure and repair rates and costs of the MS and the four different types of DG technologies (PV, W, EV and ST) available to be integrated into the distribution network are given in Table 5. For the present case study, the distribution region is such that the solar irradiation and wind speed conditions are assumed uniform in the whole network, i.e., the values of the parameters of the corresponding Beta and Rayleigh distributions are assumed constant in the whole network.

Table 5. Power sources parameters and technical data [13, 17, 28, 29, 35-37]

<table>
<thead>
<tr>
<th>Type</th>
<th>Technical parameters</th>
<th>Distributions parameters, failure and repair rates</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>$P_{cap}^{MS} = 4250$ (kW)</td>
<td>$\mu_{MS} = 4000$ (kW) $\sigma_{MS} = 125$ (kW) $\lambda^F = 4.00e-04$ (1/h) $\lambda^R = 1.30e-02$ (1/h)</td>
<td>$Cov = 0.145$ ($/kWh)$</td>
</tr>
<tr>
<td>PV</td>
<td>$T_a = 30.00$ (C) $N_{ST} = 43.00$ (C) $I_{sc} = 1.80$ (A) $k_i = 1.40$ (mA/C) $V_{oc} = 55.50$ (V) $V_{MPP} = 38.00$ (V) $I_{MPP} = 1.32$ (A)</td>
<td>$\sigma^-{PV} = 0.26$ $\beta^-{PV} = 0.73$ $\lambda^F = 5.00e-04$ (1/h) $\lambda^R = 1.30e-02$ (1/h)</td>
<td>$Ci = 48$ ($) $Cov = 3.76e-05$ ($/kWh)$</td>
</tr>
<tr>
<td>W</td>
<td>$w_{Si} = 3.80$ (m/s) $w_{Sd} = 9.50$ (m/s) $w_{Sco} = 23.80$ (m/s) $P_{R}^{W} = 50.00$ (kW)</td>
<td>$\sigma^W = 7.96$ $\lambda^F = 6.00e-04$ (1/h) $\lambda^R = 1.3e-02$ (1/h)</td>
<td>$Ci = 113,750$ ($) $Cov = 0.039$ ($/kWh)$</td>
</tr>
<tr>
<td>EV</td>
<td>$P_{R}^{EV} = 6.30$ (kW)</td>
<td>$\lambda^F = 2.0e-04$ (1/h) $\lambda^R = 9.7e-02$ (1/h)</td>
<td>$Ci = 17,000$ ($) $Cov = 0.022$ ($/kWh)$</td>
</tr>
<tr>
<td>ST</td>
<td>$P_{R}^{ST} = 0.28$ (kW/kg) $SE = 0.04$ (kJ/kg)</td>
<td>$\lambda^F = 3.0e-04$ (1/h) $\lambda^R = 7.3e-02$ (1/h)</td>
<td>$Ci = 135.15$ ($) $Cov = 4.62e-05$ ($/kWh)$</td>
</tr>
</tbody>
</table>

The hourly per day operating state probability profiles of the EV are presented in Figure 7: p^0, p^- and p^+ correspond to the profiles of disconnected, charging and discharging states, respectively.
Coherently with constraints (16) and (17), the budget is set to $BGT = 4,500,000$ ($$) and the limit of units of the different DG technologies available to be purchased is $\tau = [20000, 8, 250, 10000]$. The maximum value of the energy price is $ep_h = 0.12$ ($/kWh$) [5] and the highest value of total demand TL_h is set to 4,800 (kW). The opportunity cost for kWh not supplied Cop is considered as twice of the maximum energy price.

A total of $NS = 500$ random scenarios are simulated by the MCS-OPF with time step $ts = 1$ (h), over a horizon of analysis of 10 years ($th = 87,600$ (h)), in which the investment and fixed costs are prorated hourly.

The DE iterations are set to perform $G_{\text{max}} = 500$ generations over five different cases of population $NP \in \{10, 20, 30, 40, 50\}$. The differential variation amplification factor F is 1 to maintain the integer-valued definition of the individuals after the mutation, whereas the crossover coefficient Coc is 0.1.

HCDE runs are performed under the same conditions set for DE (G_{max}, F and Coc), but for the population size NP of 50 individuals. A sensitivity analysis is performed over the HCA control parameters, namely the cophenetic correlation coefficient CCC_{th} and linkage distance percentile $p_{\text{p"atile}}$, for all the nine possible pairs ($CCC_{th}, p_{\text{p"atile}}$) with $CCC_{th} \in \{0.6, 0.7, 0.8\}$ and $p_{\text{p"atile}} \in \{25\%\text{tile}, 50\%\text{tile}, 75\%\text{tile}\}$. Finally, for each of the five DE and nine HCDE settings, twenty realizations are carried out.

4.2 Results and Discussion

The results of the DE MCS-OPF for the different population sizes $NP \in \{10, 20, 30, 40, 50\}$ are shown in Figure 8. The 50\%tile (median) values of the minimum global costs EGC_{min}, obtained from each experiment with fixed values of NP, are presented as functions of the respective numbers of objective function evaluations NFE; the error bars represent the 15 and 85\%tiles.

As expected, for the same number of generations set in the DE MCS-OPF, the larger the population size considered the lower the values of EGC_{min} obtained (better ‘quality’ of the minimum). Additionally, we can observe marked tendencies in the reduction of both median and 15-85\%tiles values of EGC_{min} for increasing NFE. Performing a curve fitting over these values, we get: $EGC_{\text{min},50\%\text{tile}} = 49.07NFE^{-0.13}$, $EGC_{\text{min},15\%\text{tile}} = 49.07NFE^{-0.115}$ and
EGC_{min;85\%tile} = 49.07NFE^{-0.0118}, with the respective coefficients of determination \(R^2_{50\%tile} = 0.994, R^2_{15\%tile} = 0.998 \) and \(R^2_{85\%tile} = 0.998 \). The fact that the difference between the values of the 15-85\%tiles is constant indicates that the dispersion in the EGC_{min}(NFE) does not depend on NP and can suggest that the global searching performed by the DE is performed homogenously in the feasible space that contains multiple local minima.

Figure 8. ECG_{min} vs NFE for NP \in \{10, 20, 30, 40, 50\} set in DE

Figure 9 reports the median ECG_{min} values corresponding to the HCDE MCS-OPF realizations superposed to the distribution of the median ECG_{min} and 15-85\%tiles values of the base DE experiments represented by the square markers and shaded area, respectively. The vertical and horizontal error bars account for the 15-85\%tiles of the outcome ECG_{min} and NFE values.

Figure 9. ECG_{min} vs NFE for each (NP, CCC_{th, P_{distile}}) set in HCDE

Focusing on CCC_{th}, it can be noticed that for the two extreme cases, CCC_{th} = 0.6 and 0.8, the dispersion of the number of objective function evaluations is relatively small. On the contrary, the cases with a CCC_{th} = 0.7 present high variability. This can be explained by the behavior of the CCC along each generation G in the evolution loop.
Figure 10 shows the median, 15 and 85\% tiles CCC values as a function of generation G derived from all HCDE MCS-OPF realizations. On the one hand, recalling that CCC_{th} is used to control whether it is convenient to perform HCA, the small NFE dispersion in the case with $CCC_{th} = 0.6$ is because clustering is practically been applied in all generations ($CCC_{th} \leq CCC^G$), thus disabling any effect generated by passing from populations with original size NP to reduced populations with $NP^G \leq NP$ and vice versa. On the other hand, the effect is also being avoided in the case $CCC_{th} = 0.8$ by not applying clustering. Indeed, in Figure 10 it can be observed that after the generation 50 it is unlikely that by performing HCA the proposed hierarchical grouping structures represent well enough the population.

![Figure 10. CCC behavior per generation G](image)

Differently, the cases for which $CCC_{th} = 0.7$ present high dispersion in the NFE since the median values of CCC^G move in the neighborhood of the threshold throughout the major part of the evolution loop in the HCDE. Moreover, in general terms, the values of CCC^G 15-85\% tiles maintain certain symmetry with respect to the median, i.e., performing or not HCA are equally likely events, producing high fluctuations in the number of individuals considered as population and, therefore, affecting in the same way the NFE.

The above mentioned insights are noticeable also in Figure 11, which shows the empirical probability density functions (pdfs) of the population size NP^G per generation for each $(NP, CCC_{th}, pd\%tile)$ set in HCDE. Indeed, the average probabilities of performing HCA throughout the evolution cycle for the different values of $CCC_{th} = 0.6, 0.7$ and 0.8 are 0.98, 0.54 and 0.078, respectively.

Regarding the percentile of the linkage distance $pd\%tile$, in Figure 11 it is possible to identify the three peaks of reduction in the population size, confirming the role of this control parameter in defining the scale at which the hierarchical structures proposed are ‘cut off’ when the HCA takes place. In fact, lower values of $pd\%tile$ imply smaller reduction in the population size because of the higher demand of proximity between individuals or groups of individuals. In the opposite side, higher values of $pd\%tile$ allow forming clusters from individuals or groups which are relatively less similar.
From the results obtained for all the different DE and HCDE settings, we look for six representative cases for the analysis (Figure 9). From the DE runs, we select the settings with extreme and middle population size $NP \in \{10, 30, 50\}$, whereas from HCDE we choose the cases $(NP, CCC_{th}, pd\%tile)$ set as $(50, 0.6, 25), (50, 0.6, 50), (50, 0.7, 50)$ and $(50, 0.7, 75)$. The former $(50, 0.6, 25)$ and $(50, 0.6, 50)$ cases present significant reductions in the number of NFE, with small dispersion and loss of quality of the minimum ECG obtained, compared to the results obtained by diminishing directly the fixed NP in DE from 50 to 10. Similarly, the cases $(50, 0.7, 50)$ and $(50, 0.7, 75)$ may lead to considerable reductions in NFE, with acceptable losses of ECG_{min}, but subject to a high degree of variability that compromises the performance.

As for computational times, running on an Intel® Core™ i7-3740QM (PC) 2.70GHz without performing parallel computing, the average time to evaluate the objective function is 4.592 (s) for the $NS = 500$ scenarios in the MCS-OPF; for a fixed population of $NP = 50$ and its corresponding $NFE = 20,050$, the total time for a single run is on average 25.574 (h). Taking into account this, under commonly used hardware configurations, the reductions in computational time that can be achieved by using HCDE with $(50, 0.6, 25)$ and $(50, 0.6, 50)$ settings are 19% and 49% for the median, 23% and 51% for the 15%tile, and 16% and 43% for the 85%tile, respectively.

The integration of HCA into the DE algorithm introduces a significant time complexity, conditioning the reductions of computational efforts that can be obtained by applying the proposed HCDE MCS-OPF framework. Indeed, if performing HCA along all generations of DE and running the MCS-OPF on an eventually reduced population (depending on CCC_{th} and $pd\%tile$) is computationally heavier than running the MCS-OPF over the complete population, the effects of the framework can be negligible or even negative. It is possible to formulate the condition to obtain reductions in the computational efforts by the proposed HCDE MCS-OPF framework, from the asymptotic time complexities of the main algorithms that compose it. Table 6
reports the independent asymptotic time complexities as functions of the generic size m of the input to each algorithm and of the parameters that define the dimensionality of the HCDE MCS-OPF framework [26, 38].

Table 6. Asymptotic time complexity of the algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time complexity T</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDIST</td>
<td>(O(dm^2))*</td>
</tr>
<tr>
<td>HC</td>
<td>(O(m^2 \log (m)))</td>
</tr>
<tr>
<td>MCS</td>
<td>(O(n))</td>
</tr>
<tr>
<td>OPF</td>
<td>(O(\text{size}(A)))*</td>
</tr>
</tbody>
</table>

* Pairwise distance PDIST between all m vectors of size d

where, \(nps\) represents the size of the DG-integrated network, i.e., the number of nodes \(n\) times the number of all the technologies of power generation available \(ps\), \(NP\) is the size of the complete population and \(NS\) is the number of scenarios in the MCS-OPF.

Comparing the asymptotic time complexities of the algorithms involved in the realization of the proposed framework with and without integrating HCA, the following inequalities must be fulfilled in order to obtain a reduction in the computational time by HCDE:

\[
T^{\text{PDIST}}(nps,NP) + T^{\text{HC}}(NP) + \mathbb{E}[NP^G] \times T^{\text{MCS-OPF}}(NS,nps) < NP \times T^{\text{MCS-OPF}}(NS,nps) \\
\text{subject to} \\
\begin{align*}
&nps \times NP^2 + NP^2 \log (NP) + \mathbb{E}[NP^G] \times NS \times nps^2 < NP \times NS \times nps^2 \\
&\kappa = \frac{NP}{NS \times nps} + \frac{NP \log (NP)}{NS \times nps^2} + \varepsilon < 1 \\
&\forall n, ps, NP, NS \in \mathbb{Z}^+, \varepsilon = \frac{\mathbb{E}[NP^G]}{NP} \in (0, 1]
\end{align*}
\]

(26)

where, \(\varepsilon\) is the expected ratio of the population \(NP^G\) evaluated along all generations \(G\) of DE to the total population \(NP\) and \(\kappa\) is the ratio of the asymptotic time complexities of HCDE to DE.

From equation (26), we can observe that the contribution of the terms related with the complexity of MCS-OPF, dependent on \(NS\) and \(nps\), is considerably large for the fulfilment of the inequality conditions. In fact, when using DE, it is commonly accepted to set a size of the population \(NP\) not greater than ten times the size of the decision variables, in this case, 10\(nps\) [24], making the first two terms of \(\kappa\) strongly dependent on the number of scenarios \(NS\). Moreover, given the complexity of the general problem, higher values of \(NS\) lead to a better approximation of the objective function via MCS-OPF, i.e., the more likely is to fulfill the condition and the greater can be the reduction of computation time. However, the value of \(\varepsilon\) depends on the probability of performing clustering in each generation and at what scale, controlled by \(CCC_{\text{th}}\) and \(p_{\text{dist}\text{ale}}\) respectively. In some cases, \(\varepsilon\) can be close to 1 (as we inferred from Figure 11) implying negligible benefits. Table 7 shows the values of the ratio \(\kappa\) for each \((NP, CCC_{\text{th}}\), \(p_{\text{dist}\text{ale}})\) set in HCDE considering the dimensionality of the present case study defined by the values of the parameters \(nps = 55\), \(NS = 500\), \(NP = 50\). The value of 1-\(\kappa\) can be interpreted as the expected asymptotic relative time reduction achieved by performing HCDE.
Table 7. Ratio κ for each $(NP, CCC_{th}, p_{d%tile})$

<table>
<thead>
<tr>
<th>$(NP, CCC_{th}, p_{d%tile})$</th>
<th>$NP \times nps$</th>
<th>$NP log (NP) \times nps^2$</th>
<th>$\varepsilon = \frac{E[NP^{\epsilon}]}{NP}$</th>
<th>κ</th>
<th>$1-\kappa$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(50, 0.6, 25)</td>
<td></td>
<td></td>
<td>0.817</td>
<td>0.819</td>
<td>0.181</td>
</tr>
<tr>
<td>(50, 0.7, 25)</td>
<td></td>
<td></td>
<td>0.921</td>
<td>0.923</td>
<td>0.077</td>
</tr>
<tr>
<td>(50, 0.8, 25)</td>
<td></td>
<td></td>
<td>0.987</td>
<td>0.989</td>
<td>0.011</td>
</tr>
<tr>
<td>(50, 0.6, 50)</td>
<td>$1.818E-03$</td>
<td>$3.418E-05$</td>
<td>0.510</td>
<td>0.512</td>
<td>0.488</td>
</tr>
<tr>
<td>(50, 0.7, 50)</td>
<td></td>
<td></td>
<td>0.738</td>
<td>0.740</td>
<td>0.260</td>
</tr>
<tr>
<td>(50, 0.8, 50)</td>
<td></td>
<td></td>
<td>0.978</td>
<td>0.979</td>
<td>0.021</td>
</tr>
<tr>
<td>(50, 0.6, 75)</td>
<td></td>
<td></td>
<td>0.259</td>
<td>0.261</td>
<td>0.739</td>
</tr>
<tr>
<td>(50, 0.7, 75)</td>
<td></td>
<td></td>
<td>0.487</td>
<td>0.488</td>
<td>0.512</td>
</tr>
<tr>
<td>(50, 0.8, 75)</td>
<td></td>
<td></td>
<td>0.909</td>
<td>0.911</td>
<td>0.089</td>
</tr>
</tbody>
</table>

Figure 12 shows the convergence curves for the DE and HCDE cases selected, for the twenty runs performed for each $(NP, CCC_{th}, p_{d%tile})$ setting: no significant differences can be found among the convergence curves except for the expected behavior of converging to lower values of EGC_{min} for settings which imply a larger population size.

Figure 12. Convergence curves for representative $(NP, CCC_{th}, p_{d%tile})$ settings

Figure 13 shows the average total DG power allocated in the distribution network and the corresponding investment costs of the DE and HCDE MCS-OPF cases selected, choosing the corresponding optimal DG-
integrated plans as the decision matrices Ξ^{DG} for which their ECG_{min} values are the closest to the median ECG_{min} value obtained for the twenty runs of each $(NP, CCC_{th}, p_{d\%tile})$ setting. It can be pointed out that in all the cases, the contribution of EV is practically negligible if compared with the other technologies. This is due to a combination of two facts: the probability that the EV is in a discharging state is much lower than that of being in the other two possible operating states, charging and disconnected (see Figure 7) and when EV is charging, the effects are opposite to those desired, i.e., it is acting as loads.

![Figure 13. Average total DG power allocated and investment cost for representative $(NP, CCC_{th}, p_{d\%tile})$ settings](image)

In all generality, both the investment cost Ci and the average power installed by DG is comparable in all the cases, except for the setting $(50, 0.7, 75)$ for which the scale of clustering determined by $p_{d\%tile} = 75\%$, that translates into higher reductions of the population size, may lead to less similar local minima than the other settings.

![Figure 14. Nodal average total DG power for representative $(NP, CCC_{th}, p_{d\%tile})$ settings](image)
The average total renewable DG power allocated per node is summarized in Figure 14. Even though all the ECG optimal decision matrices Ξ^{DG} show differences, the tendency is to install localized sources of renewable DG power between two identifiable portions of the distribution network, up and downstream the feeder (2,6) (Figure 5), giving preference to the second portion which presents higher and non-stream homogeneous nodal load profiles.

5 CONCLUSIONS

In a previous paper, we have presented a simulation and optimization framework for the planning of integration of renewable generation into a distribution network. The optimization is considered with respect the objective of minimizing the expected global cost of the system. The inherent uncertain behavior of renewable energy sources, variability in the main power supply and loads, as well as the possibility of failures of network components are included in a Monte Carlo simulation, which samples realizations of the uncertain operational scenarios for the optimal power flow.

The framework is quite general and complete in the characteristics of the realistic system scenarios considered. However, this is at the expenses of the computational time required for the overall optimization.

In this respect, in the present paper we have addressed the problem of computational efficiency in the resolution of the renewable DG planning optimization problem. We have done so by an original introduction of a controlled clustering strategy, with, the main original contributions being:

- The integration of differential evolution and hierarchical clustering analysis for grouping similar individuals from a given population and selecting representatives to be evaluated for each group, thus reducing the number of objective function evaluations during the optimization.

- The introduction of two control parameters, namely the cophenetic correlation coefficient and a percentile of the set of linkage distances, for allowing controlled adaptation during the search process and decision on whether or not to perform clustering and at which level of the hierarchical structure built.

A case study has been analyzed derived from the IEEE 13 nodes test feeder. The results obtained show the capability of the framework to identify optimal plans of renewable DG integration. The sensitivity analysis over the control parameters of the hierarchical clustering shows that the efficiency is improved with cophenetic correlation thresholds that allow the clustering in almost all generations along the differential evolution, setting the scale of clustering to no more than the fiftieth percentile of the linkage distances in the hierarchical structure proposed. Indeed, this is shown to lead to acceptable reductions in the number of objective function evaluations, with small dispersion and loss of quality in the minimum global cost obtained.

References

