A 3-D Semi-Implicit Method for Computing the Current Density in Bulk Superconductors

Abstract : A semi-implicit approach is proposed for computing the current density in superconductors characterized by nonlinear vectorial power law. A nodal discontinuous Galerkin method is adopted for the spatial discretization of the nonlinear system satisfied by the components of the electric field. Explicit developments are used to construct boundary conditions to avoid the modeling of a volume around the superconducting sample. A modified Newton iterative method is introduced for solving the discrete system. Numerical examples on a 2-D superconducting plate and a 3-D superconducting cube are computed. Distributions of a component of the current density are presented and differences in the diffusive process are highlighted. The penetration time and losses are compared with those obtained with an A-V formulation solved by a finite-volume method.
Type de document :
Article dans une revue
IEEE Transactions on Magnetics, Institute of Electrical and Electronics Engineers, 2014, 50 (2), pp.Article 7009204. 〈10.1109/TMAG.2013.2284934〉
Liste complète des métadonnées

https://hal-supelec.archives-ouvertes.fr/hal-01093374
Contributeur : Thierry Leblanc <>
Soumis le : mercredi 10 décembre 2014 - 15:39:59
Dernière modification le : samedi 26 mai 2018 - 01:14:08

Identifiants

Collections

Citation

Abelin Kameni, Mohamed Boubekeur, Lotfi Alloui, Frédéric Bouillault, Jonathan Lambretchs, et al.. A 3-D Semi-Implicit Method for Computing the Current Density in Bulk Superconductors. IEEE Transactions on Magnetics, Institute of Electrical and Electronics Engineers, 2014, 50 (2), pp.Article 7009204. 〈10.1109/TMAG.2013.2284934〉. 〈hal-01093374〉

Partager

Métriques

Consultations de la notice

113