A proof of the generalized Markov Lemma with countable infinite sources

Abstract : The Generalized Markov Lemma has been used in the proofs of several multiterminal source coding theorems for finite alphabets. An alternative approach to extend this result to countable infinite sources is proposed. We establish sufficient conditions to guarantee the joint typicality of reproduction sequences of random descriptions that have not been necessarily generated from the product of probability measures. Compared to existing proofs for finite alphabets, our technique is simpler and self-contained. It also offers bounds on the asymptotic tail probability of the typicality event providing a scaling law for a large number of source encoders.
Type de document :
Communication dans un congrès
ISIT 2014, Jun 2014, Honolulu, Hawaï, United States. Proceedings of the 2014 IEEE International Symposium on Information Theory, pp.591 - 595, 〈10.1109/ISIT.2014.6874901〉
Liste complète des métadonnées

https://hal-supelec.archives-ouvertes.fr/hal-01093440
Contributeur : Catherine Magnet <>
Soumis le : mercredi 10 décembre 2014 - 16:19:40
Dernière modification le : jeudi 29 mars 2018 - 11:06:05

Lien texte intégral

Identifiants

Collections

Citation

Pablo Piantanida, L. Rey Vega, A. O. Hero. A proof of the generalized Markov Lemma with countable infinite sources. ISIT 2014, Jun 2014, Honolulu, Hawaï, United States. Proceedings of the 2014 IEEE International Symposium on Information Theory, pp.591 - 595, 〈10.1109/ISIT.2014.6874901〉. 〈hal-01093440〉

Partager

Métriques

Consultations de la notice

74