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Dynamic Rate and Channel Selection
In Cognitive Radio Systems

R. Combes and A. Proutiere
KTH, The Royal Institute of Technology

Abstract— In this paper, we investigate dynamic channel packet, transmitters can select a coding rate from a finite
and rate selection in cognitive radio systems which exploit predefined set (as in 802.11 systems for example) and a
a large number of channels free from primary users. In  channel from the set of available channels. The outcome
such systems, transmitters may rapidly change the selectedyf 5 nacket transmission is random, and the probabilities
(channel, rate) pair to opportunistically learn and track ¢ o\ cessfylly transmitting a packet using the various
the pair offering the highest throughput. We formulate (channel, rate) pairs are a priori unknown at the trans-

the problem of sequential channel and rate selectionasan*~. '™~ .
online optimization problem, and show its equivalence to Mitter; they need to be learnt based on trial and error.

a structured Multi-Armed Bandit problem. The structure ~ These probabilities can vary significantly and randomly

stems from inherent properties of the achieved throughput over time and across channels; they also strongly depend
as a function of the selected channel and rate. We derive on the chosen coding rate. As a consequence, tracking
fundamental performance limits satisfied by any channel the best (channel, coding rate) pair for transmission may
and rate adaptation algorithm, and propose algorithms greatly improve the system performance. In this paper,

that achieve (or approach) these limits. In tumn, the pro- e 4im at designing sequential channel and coding rate
posed algorithms optimally exploit the inherent structure selection schemes that efficiently track the best available

of the throughput. We illustrate the efficiency of our h | and th di di
algorithms using both test-bed and simulation experiments channel and the corresponding coding rate.

in both stationary and non-stationary radio environments. ~ AS shown in previous works, see e.gl [2]! [3], RSSI
In stationary environments, the packet successful trans- (Receive Signal Strength Indicator) is a poor predictor
mission probabilities at the various channel and rate of channel quality, and hence of the packet successful
pairs do not evolve over time, whereas in non-stationary transmission probabilities. In OFDM systems for exam-
environments, they may evolve. In practical scenarios, the ple, this stems from the fact that RSSI does not report
proposed algorithms are able to track the best channel he individual signal strength experienced on the various
and rate quite accurately without the need of any explicit ¢\, -4 rriers. In order to accurately estimate the quafity o
measurement and feedback of the quality of the various . g . .
channels. a w@g-band channel, more sophisticated techniques with
specific hardware are needed [4]] [5]. But these tech-
niques are not typically supported in current commercial
l. INTRODUCTION radio hardware. Instead, we need to infer the quality of
In cognitive radio systems, radio devices may accesach channel at each transmission rate through probing.
a potentially large number of frequency bands or chaklere we consider 802.11-like systems, where the only
nels. An example of such systems are those exploitifgedback sent from the receiver to the transmitter is
"white space” spectrum, the unused part of the TV/UHWhether a data packet has been successfully received or
spectrum (unallocated or not used locally). The FCabt. Hence by probing, we mean that several real data
2008 ruling allowed unlicensed devices to use parts packets have to be sent on each channel and at each rate
this spectrum, provided that devices can detect primary construct a reliable estimate of the channel quality.
users (TV transmitters and wireless microphones). Adrathe design of channel and rate selection schemes, we
part of the 2010 ruling[]1], FCC mandates the use ofthen face a classical exploration vs. exploitation trafie-o
geolocation database to identify which frequencies gpeoblem. We need to exploit the (channel, rate) pair that
free from primary users. By querying the geolocatiohas offered the best throughput so far, whilst constantly
database, we are guaranteed to obtain a set of chaneg[goring other pairs in case one of them is actually
free from primary transmitters and we avoid the difficulbptimal.
problem of sensing primary users. We rigorously formulate the design of the optimal
We consider systems exploiting channels known to sequential (channel, rate) selection algorithms as an
free from primary users. For the transmission of eadnline stochastic optimization problem. In this problem,
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the objective is to maximize the number of packetn upper bound of the expected reward that can be
successfully sent over a finite time horizon. We shoachieved in structured MAB problems. This provides a
that this problem reduces to a Multi-Armed Banditundamental performance limit thainy (channel, rate)
(MAB) problem [€]. In MAB problems, a decision makerselection algorithm cannot exceed. This limit quantifies
sequentially selects an action (also called an “arm”), atite inevitable performance loss due to the need to
observes the corresponding reward. Rewards of a giwxplore sub-optimal (channel, rate) pairs. It also indisat
arm are random variables with unknown distributiorthe performance gains that can be achieved by devising
The objective is to design sequential action selectigechemes that optimally exploit the correlations and the
strategies that maximize the expected reward overstuctural properties of the MAB problem. We present
given time horizon. These strategies have to achieve sequential (channel, rate) selection algorithms that op-
optimal trade-off between exploitation (actions that hawegnally exploit the structural properties of the problem:
provided high rewards so far have to be selected) afat our algorithms, we prove that the performance loss
exploration (sub-optimal actions have to be chosen dae to the need to explore sub-optimal (channel, rate)
as to learn their average rewards). For our (channpiirs does not depend on the number of available rates.
rate) selection problem, the various arms correspoWée also extend our algorithms to non-stationary radio
to the decisions available at the transmitter to semdvironments. Finally, we evaluate the performance of
packets, i.e., an arm corresponds to a channel andha proposed algorithms using an office white-space
coding rate. When a (channel, rate) pair is selected festbed operating in the 500MHz-600MHz band, and
a packet transmission, the reward is equall tdf the simulation experiments.
transmission is successful, and equal wtherwise. The  To our knowledge, the problem of sequential channel
average successful packet transmission probabilitiesaad rate selection has only been investigated[in [3],
the various (channel, rate) pairs are unknown, and havbere heuristic algorithms have been developed. In
to be learnt. contrast, we formulate and solve this problem rigorously,
The MAB problem corresponding to the design afe., we provide fundamental upper performance bounds
channel and rate selection mechanisms is referredsttisfied under any channel and rate selection algorithm
as astructuredMAB problem. It differs from classical and design optimal algorithms that match these bounds.
MAB problems. (i) First, the rewards associated with Contributions.
the various rates on a given channel are stochasticall We formulate the design of (channel, rate) selec-

correlated, i.e., the outcomes of transmissions at diftere
rates are not independent: for example, if a transmission
at a high rate is successful, it would be also successful at
lower rates. (ii) Then, the average throughputs achievecs
at various rates exhibit natural structural properties. Fo
a given channel, the throughput is an unimodal function
of the selected rate. (iii) In addition, most often, on all
channels, the packet successful transmission probabiliti
are close tol at low rates, and abruptly decrease(to
as the rate increases. This additional structure, referred
to as graphical unimodality, allows us to predict the
outcomes of transmissions on various channels. As we
demonstrate, correlations and (graphical) unimodality ar
instrumental in the design of channel and rate selection
mechanisms, and can be exploited to learn and track the
best (channel, rate) pair quickly and efficiently. Finally,
note that most MAB problems consider stationary envi-
ronments, which, for our problem, means that the suc-
cessful packet transmission probabilities for the diffeere
(channel, rate) pairs do not vary over time. In practice, o
the transmitter faces a non-stationary environment as
these probabilities could evolve over time. We consider e
both stationary and non-stationary radio environments.
In the case of stationary environments, we derive

tion algorithms as an online optimization problem,
and establish its equivalence to a structured MAB
problem.

We derive a performance upper bound satisfied by
any (channel, rate) selection algorithm, depending
on the assumptions made on the structure of the
problem — three scenarios with increasing structure
are considered: 1. no structural assumption is made;
2. the throughput on each channel is a unimodal
function of the rate; 3. the throughput is a graphi-
cally unimodal function of the channel and rate. We
also quantify the performance gains that one may
achieve by exploiting the structural properties of the
problem.

We propose three (channel, rate) selection algo-
rithms, one for each of the above scenarios, and
analyze their performance in stationary radio envi-
ronments. We prove that our algorithms optimally
exploit the structural properties of the throughputs.
We briefly discuss the extensions of our algorithms
to non-stationary radio environments.

Finally, we evaluate the performance of our algo-
rithms using simulation experiments. To this aim,
we use artificially generated traces, as well as traces



extracted from a white space test-bed operating inThere is an abundant literature on MAB problems,
the UHF radio spectrum . and engineers have applied these problems to dynamic
Paper organizationThe next section is devoted to thespectrum access |[8]/_[110]/_[11][ [17]. Most existing
related work. In Sections ]Il and 1V, we formulate théheoretical results, see [18] for a recent survey, are con-
problem of sequential selection of channel and rate seleerned withunstructuredMAB problems, i.e., problems
tion as astructuredbandit problem. Section]V presentwhere the average reward associated with the various
fundamental upper performance bounds for this problegecisions are not related. For this kind of problems,
In Section[V], asymptotically optimal algorithms ard-ai and Robbins[[6] derived an asymptotic lower bound
proposed. Sectioh VIl deals with non-stationary radion regret and also designed optimal sequential decision
environments. Section_VIIl presents numerical expemgorithms. When the average rewards are structured (as
ments to evaluate the performance of our algorithms.this is the case for our problem), the design of optimal
decision algorithms is more challenging, see €.gl [18].
Il. RELATED WORK Non-stationary environments have not been extensively
First observe that the joint channel and rate selectistudied in the bandit literature: Most often unstructured
problem is considerably more difficult than detectinlylAB only are analyzed, seé [119], [20], [21].
channels with no primary users as considered in a lotTo our knowledge, the only work dealing with joint
of recent works, see e.d.|[7].1[8].1[9]._[10], 11], [12],(channel, rate) selection is| [3]. However there, the struc-
[13]. In some of these papers, a MAB framework hdsiral properties of the corresponding MAB problem
been used to design primary user detection algorithnigid not been identified, and the authors only proposed
The presence or the absence of primary users just mealgorithms based on heuristics. This contrasts with the
that a channel is either good or bad. When selectipgesent work: we rigorously determine fundamental lim-
both channel and rate, the dimension of the probleits satisfied by any (channel, rate) adaptation algorithm,
becomes larger, and there are multiple and numerarsd propose algorithms approaching these limits.
possible channel states. Primary users are not considered
in our work, as we assume that transmitters can use a I[11. M ODELS

geolocation database to get a list of channels free fromyy, consider a single link (a transmitter-receiver pair).

prlmarﬁ/ uISderSIEﬂl].b b q th ¢ th At time O, the link becomes active and the transmitter
It should also be observed that most of the Worgt_arts sending packets to the receiver. For each packet,

on dynamic spectrum access considers stationary ragig yansmitter selects a channel from a finite Get
environments. In[]9],[[10] for example, the authors us

lassical hasti | techni K ) _ﬁ,...,C}, and a coding and modulation scheme from
classical stochastic control techniques (Markov Decisi inite setC — {1,..., K'}. The transmission rate when

Processes) to sequentially select a channel for transrru§l—ng coding and modulation schenkeis denoted by

sion. The underlying assumption is that the envwonmep];[ and we define the set of ratds — {r,k € K}.

is statip_qary, i.e., the packet suc_cessful tra}nsmissi% is ordered, ie.r, < 1y < ... < ri. After a
probabilities do not evolve over time. In this papel,, yqtis sent, the transmitter is informed of whether the
both stationary and non-stat_lonary radio environme Rinsmission has been successful. Based on the observed
are expl_ored. TesF-bed experlments_actually suggest thak; ransmission successes and failures at the various
the environment is non-stationary in practice, EVeN thannels and rates, the transmitter has to select a channel
neftworks where nodes do not move such as mdogﬁd rate pair for the next packet transmission. Let
offices, see e.gL13]. denote the set of all possible sequential (channel, rate)

€MdBlection schemes. Packets are assumed to be of equal
802.11 systems, see e.g.]14].][13.][16]. But again, Ogfze, and without loss of generality, for any, the

problem has one additional dimension (a channel hasotl?ration of a packet transmission at raeis 1/»
be selected): in turn, the number of available decisions b

at the transmitter is much larger than in 802.11 systems

where only the rate has to be chosen. Rate adaptatfynChannel models

algorithms are not applicable when the channel can alsd~or the i-th packet transmission on channel at

be selected for each packet transmission. This is dwe r;, a binary random variableX (i) represents
to the fact that the transmitter does not continuouslie success X (i) = 1) or failure (X (i) = 0)
monitor the same channel (as in 802.11 systems), and baghe transmissionE[X . (i)] refers to as the packet
to switch channels often to discover the best (channsljccessful transmission probability on chanaelt rate
rate) pair as rapidly as possible. r, (i.e., it is the packet reception rate). We consider



both stationary and non-stationary radio environments.timat can be exploited to speed up the learning process.
stationary environments, the success transmission prdb-emphasize the importance of exploiting the structural
abilities on the various channels and at different ratpsoperties, we consider three scenarios with increasing
do not evolve over time. This arises when the systestructure.

considered is static (in particular, the transmitter and1) Scenario 1 — No structurdf no structural assump-
receiver do not move). In non-stationary environmentons are made regarding the successful transmission
success transmission probabilities can evolve over tinprobabilities, thery € [0, 1]“*%. In such scenarios, we
Unless otherwise specified, we consider stationary radidll show that the performance loss due to the need to
environments. Non-stationary environments are treatexplore sub-optimal (channel, rate) pairs scales linearly
in Section V1. with the number of channels and rates.

We assume thak (i), i = 1,2,..., are independent 2) Scenario 2 — UnimodalityFirst observe that the
and identically distributed, and we denote By. the successes and failures of transmissions on a given chan-
success transmission probability on channat rater,: nel at various rates are statistically correlated. Indeed,
0. = E[X(7)]. We verified that the i.i.d. assumptionf a transmission is successful at a high rate, it has
holds in our test-bed and simulation framework. Dde be successful at a lower rate. Similarly, if a low-
note by (¢, k*) the optimal (channel, rate) pair, i.e.rate transmission fails, then transmitting at a higher rate
(¢*,k*) € argmax,, ri0.,. To simplify the exposition would also fail. Formally this means that for any channel
and the notation, we assume that the optimal (channelf. = (01, ...,0.x) € T, whereT = {n € [0, 1]¥ :
rate) pair is unique, i.e.rp-Oqp- > 1, for all m > ... >nx}. Then, in practice, it has been observed
(¢, k) # (¢, k*). Our analysis can be extended in afand this is confirmed in our numerical experiments)
easy way to scenarios where the optimal channel and rdtat the throughput achieved on a given channel is a
pair is not unique. Note however that scenarios wheugimodal function of the transmission rate, see é.g. [5],
different channel and rate pairs yield exactly the sanfi£6]. In other words, for any channel 6. € U, where
throughput should happen very rarely in practice. Wé = {n € [0,1]% : 3k, rim < ... < "% Trs Thy Ty >
further introduce, for any channel the optimal rate 74, +17k,+1 > ... > rgnk }. INn summary in Scenario 2,
ks, 1€, (¢, k%) € argmaxy, 1.0.,. Again for simplicity, for any channet, 6. € T Nu.
we assume that on any channel, the optimal rate is3) Scenario 3 — Graphical unimodality®We further
unique:ry: O > r0ck, for all k # k. The throughput observe (see Section M) that on a given channel,
achieved using (channel, rate) péit k) is denoted by the throughput first grows linearly with the rate (the
ter = TiOck. The maximum throughput on channel successful transmission probability is close to 1), and
is s = per:, and the throughput achieved using ththen abruptly decreases to 0. This observation has been
optimal (channel, rate) pair i8* = u}. = fierp+ made in earlier work, see [14] (the author refers to

Although we do not account for the presence dhis scenario as thesteep throughputscenario), [[5].
primary users in this work, we could actually modeThis knowledge can be exploited to build a relationship
scenarios where on each channedrimary users occupy between the throughputs achieved on various channels.
the channel with some fixed probability, and in an Indeed, for example, the throughputs observed on two
i.i.d. manner across time. Indeed in such scenarios, different channels are roughly identical in their growth
just need to replacé,, by (1 — (.)0.. If the primary phase (when the rates are low and the success proba-
users occupy channels for long periods of time (not in dnilities are close to 1). To exploit this observation, we
i.i.d. manner), the analysis would be significantly moreemark that if it holds, the throughput isgraphically
challenging. This kind of situations is investigated[ih [9inimodalfunction of the (channel, rate) pair as defined
for example. below.

We first construct a directed gragh= (V, E') whose
vertices correspond to the (channel, rate) pairs. When
(d,d') € E, we say that the decisiaff is a neighbor of

The successful transmission probabilities = decisiond, and we define\V'(d) = {d' € V : (d,d’) €
(Oe,c € C,k € K) are initially unknown at the E} as the set of neighbors af. The throughput or
transmitter, and have to be learnt. When the numbaverage reward of decisiot = (c, k) is denoted by
of (channel, rate) pairs grows large, learning the best = r.f... Graphical unimodality expresses the fact
pair for transmission then becomes really challengindhat when the optimal decision é& = (c¢*, k*), then for
Fortunately, the outcomes of transmissions using thayd € V, there exists a path it from d to d* along
various (channel, rate) pairs exhibit structural projsrtiwhich the expected reward is strictly increasing. In other

B. Structural properties



words there is ndocal maximum in terms of expectedavailable MIMO modes, with single or multiple streams).
reward except atl*. The notion of locality is defined The proposed framework can be adapted to account
through that of neighborhood/(d),d € V. Formally, for the various MIMO modes. To this aim, the set of
0 € Ug, wherels is the set of successful transmissiodecisions would correspond to the set of all possible
probabilitiesd € [0, 1]*X such that, ifd* = (¢*,k*) € (channel, MIMO mode, rate) triplets, and the graph
arg max( ) rx0ck, for anyd = (c, k) € V, there exists G would be constructed so that the throughput is a
a path(dy = d,dy,...,d, = d*) in G such that for any graphically unimodal function of these triplets.
t=1,...,p, Hd; > Hd; -

Let us now complete the construction of graghThe
set of edged is: ((c, k), (¢, k — 1)), (¢, k), (¢, k + 1)) V. OBJECTIVES ANDMULTI-ARMED BANDITS
and ((c, k), (¢, k)), ((c,k),(d,k+1)) for all (channel, ) ) .
rate)((pélir)(éki, ;)nd((allc’). ,(An ex:lm)[:zle of suc(:h agraph OUr goal is to devise a sequential (channel, rate)
G is presented in Figurid 1 — for 2 channels and 4 raté lection scheme that maximizes the number of packets

When the above observation made 6rholds (steep successfully transmitted over a finite time horizon. Such
scenario as defined in [14]), it is easy to check th&t Qes_ign_ can be formulated as an onIi_ne stoghastic
the throughput is a graphically unimodal function (w.r.f)pt'm'zgtgm problem. Tlre_chmce of th? time hgrlz_on,
graphG) of the channel and rate. In all practical caseg,‘:‘\”o'_[e y]; IS n?t really m;)porta;nt ask ong as burlng
beyond the steep throughput scenario, we have actudifj€ 'ntervalT’, a large number of packets can be sent
observed that the grapty as constructed above had so that inferring the success transmission probabilities
enough edges to guarantee the graphical unimodalitye(;?c'emly is possible.

the throughput, see SectiGn VIl Consider a rate _adaption schemec II that selects
(channel, rate) pairfc™(t),k™(t)) for the t-th packet
rates transmission. The number of packet8(7") that have
P T2 "3 s been successfully sent under algorithimup to time T
e i ™ : T . ™ i
= ! ﬁ ﬁ; ;ﬂ . is: /(1) = Y. Zf:kl( ) Xoi.(i), wheres™ (T is the
= 2 —e—e number of transmission attempts on chanaedt rate

ry before timeT'. The s.(7T")'s are random variables

Fig. 1 (since the rates selected underdepend on the past
EXAMPLE OF A GRAPH PROVIDING UNIMODALITY OF THE random successes and failures), and satisfy the following
THROUGHPUT

constraint;

In summary, in Scenario 3, we assume that TN .k
Uq. Note that there is more structure in Scenario 3 thasald’s lemma implies that the expected number of
in Scenario 2: i) € 7 NlUg, then for any, 6. € TNU. packets successfully sent up to tirfieis: E[y"(7)] =

Remark 1:Note that the sharp decrease of thic,kE[SZk(T)]Hck- Thus, our objective is to design
throughput when the rate increases may not hold #h algorithm solving the following online stochastic
some scenarios as observed in several papers. The sbatfimization problem:
transition of the reception rate motivates the use of i
graphical unimodality, but the latter is more general, F&4f 2 e L8 (T)]0ck 1)
and may hold even in abse_nce of this sharp transition.g S sT(T) x ri <T, Vek,s7(T)€eN.
Actually, we are free to design the graph and adapt ’ iy
its topology depending on the specificity of the radio
environment so as to get graphical unimodality. A~ An equivalent Multi-Armed Bandit (MAB) problem

Remark 2: The notion of graphical unimodality is
generic. Our approach consists in constructing a minimalNext we show that the above online stochastic opti-
graphG combining structural properties satisfied by theization problem is equivalent to a Multi-Armed Bandit
throughput as a function of the (channel, rate) paifMAB) problem.
and results from experiments run off-line, so that the 1) An alternative systemWithout loss of generality,
throughput is graphically unimodal w.r.&G. It should we assume that time can be divided into slots whose
be observed that in MIMO systems (e.g. as in 802.1turations are such that for ary the time it takes to
and subsequent standards), the throughput is no longansmit one packet at rate corresponds to an integer
a unimodal function of the rate (due to the differemumber of slots. Under this convention, the optimization



problem [(1) can be written as: alternative system is similarly defined by:

gleaﬁi Zc,k E[tgk (T)]rkﬁck, (2) RW(T) = ec*k* Tk*T — Z QCkaE[tZk (T)]
s.t. Yertm(T) < T, ok

3) Asymptotic equivalenceln the next section, we
show that an asymptotic lower bound for the regret
where t7, (T') = s7.(T)/r, represents the amount ofR™(T) is of the formc(0) log(T") wherec(0) is a strictly
time (in slots) that the transmitter spends, beféteon positive constant that we can explicitly characterize. It
sending packets on channeht rater;. The constraint means that for alt € I, liminfr_,, R™(7T")/log(T) >
tex(T) € TikN indicates that when a rate is selected, thig6). It can be also shown that there exists an al-
rate selection remains the same for the nekt, slots. gorithm 7* € II that actually achieves this lower
By relaxing this constraint, we obtain an optimizatiobbound in the alternative system, in the sense that
problem corresponding to a MAB problem. Indeed, cotim supy_,., R™ (T)/log(T) < ¢(#). In such a case,
sider now an alternative system where rate selectionvie say thatr* is asymptotically optimal. The following
madeeveryslot. If at any given slot, (channel, rate) paiproposition states that actually, the same lower bound
(c, k) is selected for theé-th times, then ifX (i) = 1, is valid in the original system, and that any asymptoti-
the transmitter successfully sends bits in this slot, cally optimal algorithm in the alternative system is also
and if X, (i) = 0, then no bit are received. A (channelasymptotically optimal in the original system.
rate) selection algorithm then decides in each slot whichProposition 1: Let 7 € II. For anys > 0, we have:
(channel, rate) pair to use. There is a natural mapping ... R™(T) . RY(T)
between rate selection algorithms in the original system lim inf > = lim inf

) ’ ) T—o0 log(T") T—oo log(T)
and in the alternative system: lete II, if for the ¢-th
packet transmission, rate, is selected undet in the and
original system, themr selects the same ratg in the lim sup R™(T) < B — lim sup RT(T) <3
t-th slot. T—00 log(T) T—00 10g(T)

For the alternative system, the objective is to desigitoof. Let 7 > 0. By time 7, we know that there
m € II solving the following optimization problem, have been at lea$t’r; | transmissions, but no more than

Ve, ko t5(T) € =N = { u € N},

T’k’

=B,

which can be interpreted as a relaxation[df (2). [Trx]. Also observe that both regrefg™ and R} are
?32% Zc,kE[tZk(T)]TkGCk, @3) increasing functions of time. We deduce that:
st Y th(T) < T, RY([Tr]) < R{(T) < R™([Trk]).
Ve, k75 (T) € N. Now
The above optimization problem corresponds to a MAB  |im inf (1) > lim RT(|Tr])
problem, where in each slot a decision is taken (i.e., a T—oo log(T) T—oo  log(T)
channel and a rate are selected), and where vjhe) i g AT
is chosen, the obtained rewardriswith probability ., T—oo log([T1]) —
and 0 with probabilityl — 6. The second statement can be derived similarly. [

2) Regrets:We quantify the performance of an algo-
rithm 7 € II in both original and alternative systems
through the notion ofregret The regret up to slof” B. MAB problems
compares the performance ofto that achieved by an Instead of trying to solve[{1), we rather focus on
algorithm always selecting the best (channel, rate) panalyzing the MAB problen{{3). We know that optimal
If the parameted = (0., ¢, k) was known, then in both algorithms for [B) will also be optimal for the original
systems, it would be optimal to always select (channgloblem. The nature of the MAB problefd (3) depends on
rate) pair(c*, k*). The regret of algorithmr up to time the structural assumption made on the successful trans-

slot T" in the original system is then defined by: mission probabilitied. In absence of such assumption
- - (Scenario 1), we get a classical MAB problem where
Ri(T) = e [ T] = EI;HCRE[SC‘C(T)]’ the rewards provided by all decisions are independent.

In Scenarios 2 and 3, we gestructuredMAB problem,
where |z | denotes the largest integer smaller than  as we know a priori thaf belongs to a structured set,
The regret of algorithmr up to time slotT in the which helps learning the best (channel, rate) pair. Next



we summarize the MAB problems obtained in the thresiccessful, i.e.f., = 1, rater;, would be sub-optimal.
different scenarios. Hence, there is no need to select rateo discover this
We have a sefl,...,C} x {1,..., K} of possible fact, since by only selecting ratg. on channek*, we
decisions (i.e., (channel,rate) pairs). If decis{enk) is get to know whethery-0..p« > i > 710).
taken for thei-th time, we receive a rewarg, X (7). Finally, we introduce the Kullback-Leibler (KL) diver-
(Xex(7),7 = 1,2,...) are i.i.d. with Bernoulli distribution gence, a well-known measure for dissimilarity between
with meand... The objective is to design a decisioriwo distributions. When we compare two Bernoulli dis-
scheme minimizing the regré®™(T") over all possible tributions with respective averages and ¢, the KL
algorithms = € II. The three MAB problems differ divergence isi(p,q) = plog§ + (1 —p)log %Z'

depending on the structural assumptions madé.on Theorem 1:Let = € TI be a uniformly good rate

Unstructured MAB (Pr). No assumption is made @¢h selection algorithm for MAB problem;). We have:

6 € [0,1]0%K, liminfr o 1o > cr(6), where
Structured MAB (Py). We assume that. € 7 NU for K - K -
— TkYerk — TkEYek
all channele. cr(0) = _Z CT(0er, ) * Z Z T(Oop, 5
Structured MAB (Pgyr). We assume that € 7€ NiAg. k=ko:k7k TS efetk=ko "
The proof of the previous theorem is similar to that of
V. REGRETLOWER BOUNDS the regret lower bound in[6], and is omitted here. In view

of this result, if we do not exploit structural properties

of the problem, then the regret of any algorithm scales

algorithm = € 1II in the three MAB bandit problemsat least asCK log(T)). Hence, when the_ ”“mber of
channels and rates grow large, no algorithm is able to

(Pr), (Pv), and (Pgy). These lower bounds provide . . .
insightful theoretical performance limits satisfied by anly?am the best (channel, rate) pair rapidly and efficiently.

(channel, rate) selection scheme. By comparing the lower
bounds derived for the three problems, we also quantfy Structured MABFy)

the performance gains that can be achieved by smartlyrg derive a regret lower bound for MAB problem

In this section, we derive an asymptotic (Asgrows
large) lower bound of the regrét™(7") satisfied by any

exploiting the (a priori) known structure. (Py), we need to introduce additional notations. We
defineM = N N {k* — 1,k* 4+ 1}. For any channel
A. Unstructured MAB P;) c, let No = {k : p; < ri}, and ko such thatN. =

The regret lower bound for MAB problert;) can koe,---, K}, with the conventionk:gc = K+11f
be derived using the direct technique used by Lai an — 0. Obsizrve thft for any # ¢*, koo < ko. Let
Robbins [6]. Note that the only difference betwe@n) e = NeM {kg —1,kZ 4 1}. The following theorem is

and the classical MAB problemsl[6] lies in the fact thdi"oved in [22]. Due to space limitations, all the proofs

in (P;), we know that the average reward of decisioi’® presente(?l in_[22]. _
(¢, k) is of the formr8,, for knownr. The analysis of 1heorem 2:Letr & II be a uniformly good (channel,

(Pr) is then similar to that of classical bandit problemg.ate) selection al%gr;[hm for MAB problemry). We

e (T) .
We first introduce the notion of uniformly good al-1ave:liminfr—e > cy(#), wherecy(6) is the

: log(7) . Lo
gorithms. An algorithmr is uniformly good, if for all optimal value of the following optimization problem:

parameters), for any o > 0, we have: E[t], (T)] = inf Z cvere (11 = k)
o(T*),¥(c, k) # (¢*, k*), wheretT, (T') is the number of Ak 20K o k)
times (channel, rate) pair, k) has been chosen up to *

the T-th decision, andc*, k*) is the optimal channeland ~ S.t. Vk € M, a1 (0o, tf—) >1,
rate pair (it depends o#). Uniformly good algorithms k

exist as we shall see later on. Ve # ¢ k> ko, cers L (Ocks “—) >1, and
Let N = {k : u* < rp} — note thatN depends on "k
6. There existse such thatN = {ko, ..., K}, with the Vk > ko, k # k(f,Aigg Zaczf(ch)\cz) > 1,
c k l

conventionky = K + 1 if N = (). Note that ifk < ko,
then for any channel, 7y 0c;- > 1, which means that whereC), = {\. e U N T : 1A > p*}.

even if all transmissions at ratg, on channelc were ) o
The above theorem does not provide a fully explicit

LH(T) = o(g(T)) means thatimr_, f(T)/g(T) = 0. regret lower bound. In particular, it remains unclear how



this lower bound scales with the numbers of rates aigly is the maximum node degree in the graghNote
channels. In the following theorem, we further exploihat for our graphz, v < 2C. Hence, by exploiting the
the structural properties of the MAB proble#®;;) to graphical unimodal structure, we may expect to design
show thatcy; (6) scales at most linearly with the numbeaslgorithms whose regret does not depend on the number
of channels, and does not scale with the number of rate§. available rates. In the next section, an algorithm

Theorem 3:We havecy (0) < ¢};(0) where whose regret matches the lower bound of Theokém 4
*_ is proposed.

cy(0) = Z % In this section, we have shown that the regret lower

keM I( C*"”r_k-) bound can be significantly improved when structural

n W — ek assumptions are made, i.eqy (0) < cy(0) < c;(0). By
et min{7 Qe , £-), 1 (Ocks , Ocks — fc* )} exploiting the structure of the problem, we may actually
e K E design algorithms whose regrets does not depend on the

* fe—
+ S “Ck5 . (4) number of available rates. Such algorithms do not exist
went, L Ocks ok + ) when the structure is not exploited (see Theokém 1).
and
0c = min (freks — fier)/2. VI. ALGORITHMS

heiki—Lki+1} In this section, we present algorithms for the three

In particular, ¢;;(#) is proportional to the number of MAB problems (P;), (Py), and (Pgy), and analyze

channels and independent of the number of rates.  their regrets. For the two structured MAB problems, the
From the above analysis, we conclude that the miniroposed algorithms exhibit a regret that does not depend

mum regret for the MAB probleniP;;) scales at most ason the number of available rates.

3C'log(T'). Hence we expect that exploiting the structure

of the problem (the fact tha. € 7 N/ for any channel A. The KL-UCB algorithm for MAB problert®;)

¢) may significantly improve the system performance. _ _
Indeed we expect a regret that does not depend on th&lassical unstructured bandit problems have been ex-

number of available rates. In the next section, we desiffif'Sively studied in the past, and numerous efficient
an algorithm with such a regret. algorithms have been proposed. We build on this pre-

vious work, and present a simple extension of KL-

C. Structured MAB problemiPg;r) UCB_aIgorithm [21] to the MAB problem(P;). '!'his
Graphical unimodal bandit problems have been r@I_gorlthm does not exploit any structural properties, and

cently studied in[[23], [[24]. A regret lower bound idlS asymptc_)tical!y optimal: its regret matches the lower
derived in [24]. The only difference between our grapip-oung der;:/ed N Theorellﬂ 1'.h h (ch |

ically unimodal MAB problem and those considered L_Jn er t_e KL'U(_:B ago_rlt m, eac (channel, rate)
in [24] is that we consider directed graphs, but thgaIr (c.k) is associated with an index.,(n) for the
analysis is similar. We use here the notation introduced +1)-th packet transmission:

in §-B.3] and recall that\' = {k : p* < ry.}. Forany g, (n) =max{q € [0,r] :

(¢, k), we defineN’(c, k) = N(c, k)N N. N'(c, k) is the

i (n
set of (channel, rate) pairs that are neighbors of vertex tck(n)l(#ii()a ri) < log(n) + 3loglog(n)},
(¢, k), and that need to be explored if one wants to know F b _

whether they provide better throughput thank). wheret,(n) denotes the number of times k) has been

Theorem 4:[24] Let = € II be a uniformly good Selected up to the-th transmission, and
(channel, rate) selection algorithm for MAB problem 1 ter(n)

(Poy). We have: fier(n) = ) Z Xk (1),

L (T i=1
1 f
R e log(T")

=y

= cau (0), (5) is the empirical throughput or reward of (channel, rate)

pair (c,k) up to then-th transmission. The algorithm

h RN .
where selects the (channel, rate) pair with highest index:

N* — Heck
CGU(H) - Z Tih . w e -
eryenic iy L Ok 50) Algorithm 1 KL-UCB

In view of the above theorem, for the MAB problenforn = 0,...,CK —1 (initialization): for the(n+1)-th
(Pau), the minimum regret scales adog(7'), wherey transmission, select (channel, rate) pairk)(n + 1) =




(d+1,k'+1) wheren = K +k, kK € {0,..., K—1}. Similar to the KL-UCB indexq.;(n), we define the
Forn > CK, for the (n + 1)-th transmission, selectlower confidence boung , (n) as:
(c,k)(n+1) where(c, k)(n+1) € arg max(c ) gex(n)-

q,,(n) =min{q € [0,7y] :
The rationale behind the design of KL-UCB is the 7 fer(n)
same as that of the classical UCB algorithm. We con- fer(n)1( Tk

§truct an ind.ex for each (chann_el, rate) pair, which We introduce a statistical test, which will be used to
in turn con_stltutes an upper confld_ence bou_nd _of tl&essess whether the leader on channél(n), provides
corresponding throughput. By selecting the pair with tkhelarger reward than its neighbdrgn) — 1, (n) + 1 on

highest upper confidence bound, we force the exploratiﬁ(;F5 same channel. Define the test for channat time
of suboptimal pairs if the latter have not been explore tPI’OUghUC(n) :

enough (in such a case, the upper confidence boundno

a suboptimal pair can be higher than that of the optimal ~ Uc(n) = 1{q,, ,(n) =  sup  ge(n)}

pair). KL-UCB is designed so that the number of times a C kilk—le(n)|=1

suboptimal pair is selected matches the optimal numberThe test can be interpreted as follows,(n) = 1

of times it is explored in the regret lower bound. In facineans that.(n) is better than its neighbors with high

KL-UCB is known to be asymptotically optimal in clas-probability, andU.(n) = 0 means that we do not have

sical bandit problems [21]. It can be easily establishethough samples to determine whethén) is better than

that its extension is also optimal for the problé¢fy): its neighbors. After then-th packet transmission, we

definetd(n) = {c : U.(n) = 0} the set of channels

for which we cannot determine whether the leaidén)

corresponds to the best raitg on this channel.

lim sup RY(T) _ e (0) The sequential decisions under the CRS-T algorithm
T—oo log(T) — ’ are based on the indexes of the various (channel, rate)

In particular, the regret under KL-UCB scales linearlpairs, and can be easily implemented. The intigbe)
with the numbers of channels and rates. When the laférdecision(c, k) for the (n + 1)-th packet transmission
become large, the performance of KL-UCB can be quite:
poor. bek(n) = qer(n)1{k = lc(n)},

Note that one may actually derive finite-time uppefhere gr(n) is the index used in the KL-UCB algo-
bounds on the regret of KL-UCB, as done in|[21]. Klyiihm Note that the index of decisiafe, k) is equal to
UCB is asymptotically optimal, but also provides goof it 4. s not the leader on channel The pseudo-code
performance over a finite time horizon. for CRS-T is given below (each time the decision is

Finally, regarding the computational complexity Oémbiguous, ties are broken arbitrarily).
implementing KL-UCB, note that we just require to

maintain an index for each pair, which requires a numbatgorithm 2 CRS-T
of operations that scales a5K" after each transmission.Forn = 0, ..., CK — 1 (initialization): for the(n +1)-th
The comparison between the various indexes can be dergésmission, select (channel, rate) pairk)(n + 1) =
with CK log(CK') operations. (d+1,k'+1) wheren = K +K, kK €{0,..., K—1}.
For n > CK: for the (n + 1)-th transmission, select
(c,k)(n + 1) where
o if U(n) # 0, thenc(n + 1) € U(n) and

k(n+1) € argming. i, ., (n)|<1 te(nr1y (R);
o else(c,k)(n+1) € argmaxy g by (n).

=) < log(n) + 31og log(n)},
k

Theorem 5:For anyf € [0,1]“*X, the regret of the
7 = KL-UCB algorithm satisfies:

B. The CRS-T algorithm for MAB proble(®;;)

Next, we present CRS-T (Channel and Rate Sampling
with Tests), an algorithm that exploits the structure of
the MAB problem (Py), i.e., the fact that on each
channel, the throughput is a unimodal function of the The design of the CRS-T algorithm is motivated by
rate. To describe our algorithm, we introduce the fothe following objectives: (1) For all channels, we need
lowing notations. After then-th transmission, the rateto play the leader and all its neighbours until we can
with the highest average empirical throughput on chanragtermine with high probability that the leadi(n) is
c is referred to as thdeader on channele, and is the best raté. (2) Once we have determined thatn)
lc(n) = argmaxy ficx(n). The global leaderl(n) is is k} for all channels, then we play the leader of the
the (channel, rate) pair with highest average empiricethannel with the largest index, i.e we apply KL-UCB
throughputil(n) = arg maxcx) flek(1)- restricted to the set of leaders.
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Define A = min ) ming. g —gj=1 [t — per| the For the(n + 1)-th transmission, KL-UCB-U selects the
minimal separation between two neighboring rates dohannel, rate) pair in the neighborhood of the leader
any channel angi. = (1ck: + max,_j: =1 fek)/2- The with maximum index. Ties are broken arbitrarily.
next theorem, proved in_[22], provides a finite time _
upper bound on the regret under CRS-T. The asymptoftgorithm 3 KL-UCB-U

regretlog(7)c“*S7() scales linearly with the number ofgory, — 0, ... C'K — 1 (initialization): for the(n+1)-th

channels, but is independent of the number of availahignsmission, select (channel, rate) pairk)(n + 1) =
rates. In particular, CRS-T exploits the structure of tt‘(%/+1,kr+1) wheren = K +k, kK € {0,..., K —1}.

MAB problem (F). For n > CK: for the (n + 1)-th transmission, select
(¢, k)(n + 1) where:

Theorem 6:For anyf such that for alk, 6. € T NU,
and for alle > 0, the regret of the CRS-T algorithm

satisfies: ln) it () (n) = 1)/7 €N,
CRS.T CRS.T (e, k)(n+1) = arg max bg(n) otherwise.
RS T) < (14 €)e=™(0) log(T) (¢.k)eN (U(n))

+ Te(A™? + log(log(T))),

wherel'. > 0 depends or, C, K andR but not ond,
and

Remember that is the maximum number neighbors
in G of a given (channel, rate) pair. The KL-UCB-U
o algorithm periodically selects the leader to make sure
CRS-T/ o\ 1 . that the latter is often selected. The design of KL-UCB-
¢ (9) = ZTG Z (" = tien), U is based on the lower regret bound derived for the
MAB problem (Pgy). This lower bound implies that
with an optimal algorithm explores suboptimal (channel, rate)
. ) N . pairs a number of times that scales withg(7") only
Te = 1in <k;|klfl,1£<1l(ec’f’“c/r’“)’I(ec’fé’/“‘ /T’“é)> for pairs that are neighbours of the the optimal pair
o in the graphG. Hence in KL-UCB-U, the exploration
The regret under CRS-T does not depend on t'l%erestricted to the neighbours of the current leader in

number of available rates, and hence exploits (at legst 54 i [24], we can establish that KL-UCB-U is
asymptotically) the unimodal structure @¢Py). The aéymptotically’optimal'

computational complexity of CRS-T is similar to that
of KL-UCB because it essentially requires to maintain Theorem 7:For any 6 c T¢ NUg, the regret of
the indexes of the various channel and rate pairs: it scafesKL-UCB-U satisfies:

linearly with CK (up to a logarithmic factor). lim R™(T)
700 108(T)

In particular, KL-UCB-U optimally exploits the struc-
ture of MAB problem(Pgy). In turn, if the throughput

Finally, we present KL-UCB-U, an algorithm foris a graphically unimodal function of the (channel, rate)
MAB problem (Pgrr). KL-UCB-U is a natural exten- pair, then KL-UCB-U asymptotically outperforms any
sion of an algorithm proposed in_[24] for graphicallyther algorithm, and in particular CRS-T, an algorithm
unimodal bandits with undirected graphs. This algorithatesigned to exploit the unimodal structure per channel
is asymptotically optimal (its regret matches the lowesnly.
bound derived in Theorem 4). Note that a finite-time regret analysis for KL-UCB-U

Recall that the global leader is denotediby) before is possible as shown in_[24]. KL-UCB-U is asymptoti-
the (n + 1)-th transmission. We introduce,. ;(n) the cally optimal, but also provides good performance over
number of times that (channel, rate) pairk) has been a finite time horizon. Finally, again, the computational
the global leader up to the-th transmissiony. ;,y(n) = complexity of KL-UCB-U is similar to that of KL-UCB.
Yoy H{i(n') = (¢, k)}. The index associated with de-

c=1 kilk—k*|<1

< CGU(H)v

C. The KL-UCB-U algorithm for MAB problert¥;)

cision (c, k) before the(n + 1)-th transmission is: VIl. N ON-STATIONARY RADIO ENVIRONMENTS
bot () _max{ € [0.m] : t (n)[(ﬂd“(n) i) _ In practice, channel co_n.d_itions may be non-stationary,
k1Y) = q 1Tkl ek e Tk i.e., the success probabilities at various (channel, rate)

pair could evolve over time. In many situations, the

<
< log(vi(n)(n)) + 3log(log(vy(m) (n) )}’ evolution over time is rather slow — refer to] [3] and
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to Section V for test-bed measurements. These slewTypically 10 or 20 packets sent using the same channel
variations allow us to devise (channel,rate) adaptatiand rate pair is enough. These two requirementsrfor
schemes that efficiently track the best (channel,rate) pg& in opposite directions, and clearly when the packet
for transmission. successful transmission probabilities evolve rapidly, an
We assume that for allc, k) pairs, the transmissionsappropriate design of is not possible. In practice, may
outcomesX,.,(n) , n = 1,2,... are independent, with be tuned by just observing the way these probabilities
expectationd.(n) = E[X.(n)]. At time n we define evolve (via off-line preliminary experiments). It is not
the throughput of(c, k) wer(n) = rpfe(n), the best necessary to adaptover time if the radio environment
throughput *(n) = max.j puex(n) and the optimal does not change (say for example, users stay inside a
decision(c*, r*)(n) = argmax i fick(n). building). However, in other scenarios, we may need to
Any algorithm designed for stationary radio environadaptr.
ments can readily be extended to non-stationary environ-
ments. These extensions are obtained by replacing em- VIIl. N UMERICAL EXPERIMENTS

pirical averages by averages over a sliding time window. |, this section we numerically illustrate the perfor-

Let 7 > 1 denote the sliding window size, and defingyance of the proposed (channel, rate) selection algo-
the empirical rewardic,(n) as: rithms. To this aim, we conduct simulation experiments
where our algorithms are tested against channel quality

figg(n) = tTTécn) > Xe(@)1{(c,k)(n') = (c,k)}, traces that are either extracted from a test-ied [3], or

kN mw=n—r41 artificially generated. In the latter case, we generate

where traces based on a widely used statistical model for radio

n propagation and on a mapping between channel quality

e(n) = Z 1{(c,k)(n") = (¢, k)}, and probability of packet successful transmission on a
n'=n—7+1 given (channel,rate) pairl[5].

with the conventioni’, (n) = 0 if t7, (n) = 0. We also
define the upper confidence index of (channel, rate) pair Traces extracted form a test-bed

(¢, k) as: In this subsection we present trace-driven experi-
0 (n) = max{q € [0, 4] : ments using the test-bed described in [3]. The test-
o bed is based on a SDR platform (Lyrtech SFF-SDR),
I(M,i) < log(7) + 3log(log(7))}. and is located in an indoor office. The PHY layer
Tk Tk is OFDM, as in 802.11a/g/n. There afe available
We define sliding window variants of the algorithmsates{4.5,6,6.75} Mbps corresponding to QPSK mod-
presented in Section VI by replacing,(n) by t7,(n), ulation with respective coding rate§l/2,2/3,3/4}.
fick(n) by a7, (n) and g (n) by ¢, (n). For instance, We consider5 channels in the UHF band centred at
KL-UCB with sliding window is the algorithm which {510, 530, 550, 580,600} Mhz . The bandwidth of each
selects(c, k)(n) € arg max,y, ¢, (n). channel is10 Mhz, and the packet size 5500 bytes.
In [25], the authors show that algorithms with slidinghe trace duration i§00s.
windows efficiently track the best decision over time The traces are collected as follows. The transmitter
provided that the environment evolves relatively slowlyransmits 10 packets at each rate on a given channel
This is confirmed in[[24], where the performance dfefore moving to the next channel. Each measurement
algorithms similar to KL-UCB and KL-UCB-U with round (where each (channel, rate) pair is probed) hence
sliding window is analyzed. Due to space limitation, weonsists of the transmission ®6 x 5 x 3 packets, and
skip this analysis; refer td [24] for more details. lasts less than 1s. This means we sample a given channel
The way the window size should be chosen in prac-at a given rate once every second. In each round and
tice is dictated by the following remarks. Firstshould for each channel, we calculate, by averaging over 10
be relatively small compared to the time it takes for thegackets, the RSSI, the successful packet transmission
packet successful transmission probabilities to evolyarobabilities and the goodputs at the 3 different rates.
This ensures that the algorithms with sliding window In Fig[2, we plot the best decisiofc*, k*) as a
track the best channel and rate pair. Thershould be function of time. the radio environment is hon-stationary,
sufficiently large so that the throughput of the variousnd the optimal decision remains constant for several
channel and rate pairs could be estimated with precisisaconds. Since a packet transmission lasts alyosf the
using samples collected in an interval of time of duratigpacket successful transmission probabilities for various
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Fig. 2 TEST-BED: THROUGHPUTS OF THE VARIOUS ALGORITHMS AS A
TESTBED: BEST (CHANNEL, RATE) PAIR (¢*, k*)(t) AS A EUNCTION OF TIME.

FUNCTION OF TIME.

copies of this signal are received and the amplitude
T : ralsd phase of each delayed copy is an independent
missions. Therefore we have quite a lot of statistic

: i : . ayleigh fading process. We use Jakes’ model to sim-
information to find the best decision. Furthermore tr\.‘ﬁﬁte Rayleigh fading with user speed set to match the

window size used in the tested algorithms should be e variability of the test-bed trace presente@ I VII-A
th? olr:QeEiof a fe;/vtst(;cotr;]ds B n’e I'X I dto iSL UCB This corresponds to static users such as laptops in an
N Fgid, we plot the throughput under #L- aN%tfice environment. The expected power of each delayed

KL-UCB-U algorithms. For the sake of comparison, Wﬁath is chosen according to the field measurements
also plot u*(t) the throughput of an Oracle algorlthmpresented in [[26]

that always selects t.he optimal dec_|3|on. We also pk.)tWe assume that OFDM is used, and the mapping
the throughput obtained by choosing the best static . .

) . tween the strength of received signal on each sub-

(channel, rate) pair, computed offline. We observe that . . .
. : T . carrier and the probability of successful transmission
selecting the best static pair is clearly sub-optimal, sO
: i .’ 1S calculated by the method presented[ih [5]. We con-
that adaptive algorithms can lead to a large gain i . . .
throuahout. Both decision alqorithms. KL-UCB and KI_S|der5 channels with bandwidtt20 Mhz in the 2.4
ghpu® g ' Hz band centred af2.4,2.41,2.42,2.43,2.44}GHz,

UCB-U, manage to closely follow the best (channel, rate . .
pair. KL-UCB-U provides a throughput equal 9% of respectively. Each channel hag sub-carriers and

. . he packet size isl500 bytes. We consideg avail-
that obtained under the Oracle algorithm, whereas th ]
throughput under KL-UCB is equal t60% of that of able rates{6, 13, 19.5, 26, 39, 52, 58.5, 65} Mbps, and a

the Oracle algorithm. There is not a huge performangﬁgstgggr[éﬁzav% OF())alsre\é;ng di‘n average SNR20fdB.

gap between KL-UCB and KL-UCB-U because there are ) ) i )
We first consider stationary environments, so that a

few available ratesK = 3. Hence KL-UCB explores
C x K = 15 (channel,rate) pairs, while KL-UCB-U snapshot of the success probabilities for all (channe),rat

explores (in the worse cas€)’ + 1 — 11 pairs. We pairs is drawn and kept constant throughout the simu-
will show that increasing the number of available ratd@tion- Figld shows the packet successful transmission

K makes this difference significantly larger probabilities and throughputs of different (channelyate
' pairs. As announced, graphical unimodality holds: the

o throughput on each channel is a unimodal function of
B. Artificial traces the rate, and given the optimal rak& on sub-optimal
We also present numerical results based on a widelgannelc # ¢*, there exists another channél # ¢
used statistical model for radio propagation. Namely, veich that eitheru. . > piegs OF fler i1 > fejr-
assume that the channel is a multi-path Rayleigh fadi@raphical unimodality results from the fact that we are
channel. When a signal is transmitted, several delayieda steep environment as defined(inl[14]. Hig.5 presents

decisions stay constant for thousands of packet tra
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2000 n TRANSMISSION PROBABILITIES ON PERFORMANCE IN A
0 2 . . 4 6 NON-STATIONARY ENVIRONMENT.
Transmission number X 104

Fig. 5
SIMULATION : REGRET OF DIFFERENT DECISION RULES AS A

FUNCTION OF TIME IN A STATIONARY ENVIRONMENT. .
selection of channel and rate can be done solely based on

ACK/NACK feedback with excellent performance. This

is critical for real-world systems because feedback of
the regret of KL-UCB and KL-UCB-U as a functionchannel measurements is problematic in practice both in
of time. KL-UCB-U beats KL-UCB and for large timeterms of delay and overhead.

horizons the regret under KL-UCB-U is roughly half So far, in non-stationary environments, the packet suc-
of that under KL-UCB. Hence exploiting the graphicatessful transmission probabilities were evolving slowly.
unimodal structure significantly helps. Next we vary the speed at which they evolve, by arti-
We now turn to non-stationary environments. Aficially accelerating our traces by a factor 20 and 100.
in IVII-AJ] we present the best pair as a function oResults are presented in Fig. 7. At all speeds, KL-UCB-
time and the throughputs of different algorithms in Eig.&) beats KL-UCB, and the performance gap between
Again KL-UCB-U beats KL-UCB. the two algorithms increases with the speed. When the
For both the test-bed and simulation, the performaneavironment changes faster, the performance of KL-
of KL-UCB-U is rather impressive: its throughput is aJCB becomes poor, as the algorithm needs to explore
least95% of that of the Oracle, without knowing theall (channel, rate) pairs, and cannot track the best pair.
throughputs of the various (channel,rate) pairs befor®n the contrary, KL-UCB-U exploits the structure and
hand. This shows that given a good decision rule, tieeplores less, which makes its performance more robust.



In this paper, we have addressed the problem of joint
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IX. CONCLUSION [11] L. Lai, H. El Gamal, H. Jiang, and H. Poor, “Cognitive
medium access: Exploration, exploitation, and competjtio
IEEE Transactions on Mobile Computingol. 10, no. 2, pp.

channel and rate adaptation in cognitive radio systems. 239-253 2011.
We have shown that the problem is equivalent to [&] Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized
structured MAB problem, where the structure stems cognitive MAC for opportunistic spectrum access in ad hoc

networks: A POMDP framework,Selected Areas in Commu-

from inherent properties of the throughput as a function nications, IEEE Journal amvol. 25, no. 3, pp. 589-600, 2007.
of the selected channel and rate. For several assumpt S. Ahmad, M. Liu, T. Javidi, Q. Zhao, and B. Krishnamatha
tions on this structure, we have derived fundamental “Optimality of myopic sensing in multichannel opportunist

performance limits satisfied by any sequential (channel,

access,”IEEE Transactions on Information Theoryol. 55,
no. 9, pp. 4040-4050, 2009.

rate) selection algorithm. _For eaCh. structurg type, W1 J. Bicket, “Bit-rate selection in wireless network&h.D. dis-
have also proposed algorithms which are either close sertation, Massachusetts Institute of Technology, 2005.

or achieve these limits. Finally we have assessed thel S H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust

efficiency of the proposed algorithms through trace-

rate adaptation for 802.11 wireless networks,”Hroceedings
of ACM MOBICOM 2006.

driven experiments and simulations. The two key insightss] L. Deek, E. Garcia-Villegas, E. Belding, S.-J. Lee, and
from our results are: (a) The channel and rate adaptation K. Almeroth, “Joint rate and channel width adaptation in 802
problem has a strong structure. This structure can be MIMO wireless networks,” inProceedings of IEEE Secon

exploited to devise algorithms whose performance d0ﬁ§]

2013.
C. Tekin and M. Liu, “Online learning in opportunistipactrum

not depend on the number of available rates, and is access: A restless bandit approach,’Rroceedings of IEEE
close to that of an Oracle algorithm that perfectly knows INFOCOM 2011.

the packet successful transmission probabilities at a[ﬁ§]

S. Bubeck and N. Cesa-Bianchi, “Regret analysis oftsistic
and nonstochastic multi-armed bandit problenf&tindations

_aV"i”abIe (channel, 'jate) pair._ (b) There exist readily  ang Trends in Machine Learningol. 5, no. 1, 2012.
implementable algorithms which allow almost perfegi9] L. Kocsis and C. Szepesvari, “Discounted UCB,” Rmoceed-
channel and rate selection without the need of any ings of the 2dn PASCAL Challenges Worksh2@06.

measurement and explicit feedback of the quality of el

J. Y. Yu and S. Mannor, “Piecewise-stationary bandahlpems
with side observations,” ifProceedings of ICML2009.

various channels. [21] A. Garivier and O. Cappé, “The KL-UCB algorithm for

(1]

(2]

(3]
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(5]

(6]

(7]

bounded stochastic bandits and beyond,” Rroceedings of
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control setU. The transition probabilities given controlNote thatB..(0) = 0 if r;, < rg-0..x+, hence ifk ¢ N.
u € U are parametrized bg taking values in a compact By applying Theorem 1 in_[27], we know that;(0)
metric space®: the probability to move from state is the minimal value of the following LP:

to statey given the controlu and the parametef is . .

p(z,y;u,0). The parametef is not known. The decision " e ek (1" = Tilek) 6)
maker is provided with a finite set of stationary control S.t. infyepo) 2o k)£ k) g IR (0, 0) > 1, (7)
laws G = {gi1,...,9x} where each control lawy; e >0, V(e k). (8)

is a mapping fromS to U: when control lawg; is ) ) )
applied in stater, the applied control is = g;(z). It Next we detail the constraintg](7). These constraints
is assumed that if the decision maker always selects fH& €quivalent to:

same co_ntrol Iavg the Markov chain is then irredu_cible inf Z aczI(C’l)(H,)\) >1,VE£ K (9)
with stationary distributionr]. Now the reward obtained AeB.+«(6) (D)o k)
when applying control. in statex is denoted by-(x, u), >

c\l *
so that the expected reward achieved under control law, "' Yo aed“N(0,0) > 1,¥e # ¢ (10)

g ist pg(g) = >, r(z, g(z))m)(x). There is an optimal (e, D)# (e k%)
control law givend whose expected reward is denoted inf Z e 10, 0) > 1,Ve # ¢, Vk # kL.
Ly € argmaxgec io(g). Now the objective of the AEBcr (0) (' 1) 2(c* k)

decision maker is to sequentially control laws so as to (11)

maximize the expected reward up to a given time horiz% . . : )
- nstraint[(D).We prove that is equivalent to:
T. As for MAB problems, the performance of a deC|S|on7@) P [®) a

*

scheme can be quantified through the notion of regret . I

_ _ ekl (O, —) > 1. 12
which compares the expected reward to that obtained by kear ek (e Tk) 12)
always applying the optimal control law. Observe that it < ko (i.e., if k ¢ N), thenB..,(0) = 0.

We now apply the above framework to our MABLet & € N with k& # k*. Without loss of generality
problem. For(Py), for all ¢, the parameter,. takes assume thak > £*. We prove that:

values in7 N U. The Markov chain has values in k .
S = {0,r,...,rx}. The set of control laws €7 = inf Z gl @,\) = Z Otc*zf(Qc*z,M—).
{1,...,C} x {1,...,K}. These laws are constant, in*¢Bex(®) 57 ) i T
the sense that the control applied by control lawk) (13)

does not depend on the state of the Markov chaifhis is due to the fact that we can always choage=
and corresponds to selecting (channel, rate) paik). 6 for all ¢ # ¢*, and to the following two observations:
The transition probabilities are given as follows: for all « for all A\ € B...(6), we havel .p-1p = Opoperp-

x,y €S, and \.-p7i > A7+, Which using the unimodal-
0,1 if y— ity of A, implies that for anyl € {k*,... k},
p(x,y: (e, k), 0) = p(y; (¢, k), 0) = { 1 G iy =0, N g7y > Ourperpe. HeNcE:
. k *
Finally, the rewardr(z, (c,k)) does not depend on the Z oo I D(6,2) > Z ootI (61, M_)'

state and is equal te.f.., which is also the expected
reward obtained by always using control ldw k).

,
I#k* I=k*+1 !

o For ¢ > 0, define \. as follows: for alll €

We now fix 0: Ve, 6, € T NU. Define 1€k (9, \) = (K%, kY Aer = (14 (1= k)X, and for
I(0., Aex) for any (c, k). Further define the seB(6) all 1 ¢ {k*,...,k}, Ay = 0oy By c%nstruction,
consisting of allbad parameters\: Ve, A. € T NU such A € Be-i(6), and
that (c*, k*) is not optimal under parametar but which cooeRen
are statisticallyindistinguishablefrom 6: . py . p*

B ' ll—I}%) ac*ll( ’ )(97 >\e) = Z ac*ll(eb T_l)
BO)={\:Ye . € T NU, I£k* I=k*+1
Atk = 90%*7%&}:)( TeAek > 1}, From [I3), we deduce that constraifts (7) are equiv-

_ _ . alent to [(I2) (indeed, only the constraints related to
B(#) can be written as the union of seffs;,(¢) defined (< Ar are really active, and fat € M, (7) is equivalent

*

as: to ac kI (Ock, £-) > 1).
Bep(0) = {X € B(0) : i Ack > ThAerer }- Constraint[(ID)Note that ifk; < ko, then B () = 0.



Assume thatc} > ko. When\ € B (6), the optimal
(channel, rate) pair undex is (c, k). This implies that
Tk Acks > (%, and so:

2.

(¢ D) #(c*
Now select)\. as follows: ., = 6. for all (¢, k) #
(e, k%), and A\egr = p*/rps + €. Then . € By (0) for
all e >0, and

Qe T€D(0, ) > g T(Ocgs, ).

T+
) &

*
: , (¢/\1) _ . N M
ll_% Z %2 l[ (97 )\) ackC I(eckc7 e )
(e/,D)#(c* k) ¢
We conclude thaf(10) is equivalent to:

*

I
Ve # ¢, ackﬂ(@:k;, E

) > Lhr>ke-

Constraint[(Il).For k < ko, B.x(0) = 0. Assume that

k> ko andk # k3. Then ., ), )ac/ll( DG, )
is minimized over B.(0) when for all ¢ # ¢
and all k, \ox

= 0., and is actually equal to:
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havef .+ = Ap+. Sincek — rpA.+; IS unimodal, and
k* ¢ argmaxy rip A+, then there must exist a neighbour
k' of k* such thatry Aespr > Tx Aorpr = TpeOprpr = p*.
Hence\..xr > p*/rr. Using the monotonicity of the
KL divergence:

D(Q, )\, Oé) > ac*k’[(gc*kH )\C"k’)
> e L (Ocepr, 1 /11
> 1.

, C# .

k = arg maxy, rp\; be the optimal rate for channel
We further consider two cases depending on whether
is equal tok}.

Case (a):k = ki. Then\ € B.(0), and we have
Tks Ackr > p*. Hence:

D0, \, ) > aps L(Ocker s Ackr )

> ackz[(eckg ) M*/Tk;)
> 1.

(i) If X € UpBe(6) Under parameten, let

infy.ec, 22 aal (0, Aa). Unfortunately, the above op-case (b):k # k*. Sincek + ri\e is unimodal and

timization problem cannot be further reduced. O

PROOF OFTHEOREM[3
For \: Ve, 6, € TNU anda € RY*X, we define:

E ackl ck» ck

(c.k)

D0, )\ «)

As defined previously, the “bad parameter set” is:

B0) ={AeTNU: Aewjr = Op I(H%Wk/\ck >}

Further define the set:

C={acRY**: inf DO\ a)>1}.

AEB(0)

cy(0) in Theoren{® is the solution to a minimization

problem overC . An upper bound oty () is obtained

kX # argmaxy rpA, there must exist a neigbour
of k% such thatrp Acgr > 74 Ackr. SINCEE = 7404, IS
unimodal andk; = arg maxy, r0., We havery. .. >
ri- 0.4 . Therefore:

T Aok — e ])
> (ks Ocks — Tibeir) /2 > 0.

max(rkz )\ck; — Hck;

To establish the above inequality, we have used the fact
that for all a,b > 0 and for allz € R, max(|z|, |z +
a+0bl) > (a+0b)/2, and have applied this result for
T = Tk ()\ck; - eck;)l a = Tp ek — Tk;/\ckg' andb =
Tk Ockr — Ti/0crr. We have shown that:

either (b1)ry: [Acks — Ocks| > Oc;

or (bZ) Tk”)\ck’ - eck" > 5c-

If (b1) holds, then eitheA ;. < Ockr — c/Trs OF Aoy

by choosinga € C and by computing the value of theec,fZ + dc/ri:- In the latter case, we have:

objective function atv which is Zc’k ok (W — prer). We
prove that if we definey as:
o Oprfp = 1/[( qu’r ) if ke M,
o ek = (min{I(Ock;, %)al(eckpeckz - rii)})_l
if ¢+ c*, ‘ ‘
o Ak =1/1(0ck, Ocr, + %) if ¢ # ¢+ andk € M,
o ag=0if c# ¢ andk ¢ M. U {k}}.

thena € C. To do so, we use the following decomposi-

tion: B(0) = Uek)(c k) Ber(6) where
Bck(e) = {/\ € B(Q) : (Cv k) € arg (II}E}C}/{) Tk//\c/k’}'

Tkx Tk de
)\ck’ )\ck* ' Qck;
% Tk Tk
> eck' + -

(4% '
If (b2) holds, then eitheA ., > 6. + /75, OF Ackr

IN

Ocxr — Oc/71s- IN the latter case, we have:
Tk Tk 5(;
)\ckg S )\ck’ S eck’ -
T'k;; T'k;; T'k;;
0
< Ockr — <.

In both cases (b1l) and (b2), we have proved that either
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Ackr < Ocr — 0c/Ts OF Aepr > Ocpr + O /1y Finally: Further define the sets of instants:

D(Q, )\,Oé) > Oécsz(eck;, )‘ck;) + ack/l(ﬁck/, )\ck’) Bck = {1 <n< T: (C, k)(n) = (C, k),tck(n) < fck}
> max{ ks L (Ocks, Ocrr — i), Cao={1<n<T:n¢gA/ ck)(n) = (ck),
TR le(n) # K2}
e T(Ockr, Ocrr + fc )} Dy ={1<n<T:n¢A/(ck)(n)=(ck),
k/

le(n) = k%, ten(n) > ter}-
and we have that:
We have proved thainf,cpg) D(0, A, a) > 1, and
thus o € C. Now for our choice ofa, the value of E[tex(T)] < E[|A[] + E[|Bek|] + E[|Cex|] + E[|Dex|]-
the objective function of the optimization problem i
Theoren2 isc/,(9). We conclude that (0) < ¢,(0).
Il

> 1.

"ht all instantsn e Bk, ter(n) is incremented, therefore
|Bei| < ter. From the above inequality we deduce:

Elter(T)] < E[JA] + ek + E[|Cer] + E[| De]-

To prove the announced result, it is sufficient to show
PROOF OFTHEOREMI@ that the expected size of, B, and D, are at most of
orderO(A=2 + log(log(T))).
We first decompose the regret as the sum of the regret _ )
due to exploring the neighbourhood of the optimal rate We will prove the following upper bounds:

on each channel, and the other (channel,rate) pairs. By

definition of the regret: (i) E[JA]] = O(log(log(T)))
n N (i) E[|Cal] = O(A?)
R™(T) = (1" — pick)Elter(T)] (i) E[|Dul] = O(1).
(c;k)
=2 2. (W= per)Eltan(T) [ 0) E[[A]] = O(log(log(T))) |
¢ |k=kzl<1
. To upper bound the expected size 4f let us prove
3 W ) Elte(T)): hae TP P P
¢ |k—kz|>1 ’
Therefore, to prove the theorem, it is sufficient to provel C Uem il <n < T :ter(n)1(0ck(n), 0cr) = f(n)}-
that for all channelg and alle > 0: (14)

Eft o (T)] < (1 + €) log(T)r=! + O(log(log(T)) + A~2) We recall the definition of index.(n):
c <({l+¢€lo 7. + O(log(lo A2, ‘
k g gllog qek(n) = sup{q € [0,7y], ter(R)I(Ock(n), q/T1) < f(n)}.

if |k — k% <1and: _ o _ _
) Sinceq — I(p,q) is increasing forg > p, if g.(n) <
Eltex(T)] < O(log(log(T)) + A™7). Ler then:

otherwise. To ease nOtatiOf.].We deflfl@?’) = log(n) + tck(n)l(éck(n)v :uck/rk) = tck(n)l(eck(n)> eck) > f(’I’L)
3log(log(n)), and the empirical success probability of _ )
(channel,rate) paifc, k) asfu.(n) = fir(n)/ . Using the same reasoning for the lower confidence bound

Define A the set of instants where there exists at leat:(")’
a (channel, rate) pair, k) such that either its index (!.egck(n) = inf{g € (0,7, tex (M) I (Oek(n), q/7x) < f(n)},
its upper confidence bound).(n) under-estimates its _ ' _ _
expected valug,;, or its lower-confidence boungd, (n) and sinceq — I(p,q) is decreasing forg < p, if
over-estimates its expected valug,: 4., (n) > pey thentep(n)1(0cx(n), 0cr) > f(n), so that
. equation [(14) is valid.

A — U(c’,k’){l S n S T N qc/k/(n) < ,uc’k/}y

A2 = U(c’,k’){l <n<T: chk/(n) > Mc’k’}a

A=ATUA Pltos ()T (Bus (), 6ut) = f()] < LB ()]

R n(log(n))®
Consider(c, k) ande > 0 both fixed and define., =
(1+e€) f(T)r7tif |k — kX <1 andt., = 0 otherwise.  Using a union bound we obtain the announced in-

Applying [21][Theorem 10] we have that:



equality:

E[lA]] <

| A

O(lo (
(i) E[|Cek|] = O(A™?)

Let us decomposé€’.;, depending on the index of the

leader:

Ce = Upsijh—t| <1k 2k ok
Cow ={l<n<T:n¢ Alek)(n) =

lc(n) = k/},

the set of instants ¢ A where(c, k) is selected and’
is the leader on channel

Fix ¥ # k% and considem € C.. There exists
k such that|k — &'| = 1 and u; > per + A since
k' # k¥ andk — e is unimodal for alle. Let us prove
that we must havéd/.(n) = 0. Assume that/.(n) =
1 so thatg ,,(n) > maxym g gr|=1 ger () = q (1)
Sincen ¢ A we haveiq.;(n) > pg > pp > q,,,(n), a
contradiction.

Defines = > . _, 1{n’ € Cu} the number of
instants inC.;;,- betweenl andn. Since for alln €
Cerir We haveU.(n) = 0, we must havec, k)(n) €
arg ming., g —_gs|<1 tepr (n) SO thattgr (n) > s/3 for all
k" such that|/k” — k| < 1. Sincep; > up + A and
i (n) > fiz(n) , we must have eithefiy (n) — pup| >
A/2 or |y (n) — il > A/2.

Soter(n) > s/3 for all ¥” such thatk’—£”| <1 and
maxy g —gr|<1 | (n) — g (n)| > A/2, and applying
Lemmall, we obtain thdk[|C|] = O(A2).

| (i) E[|Der]] = O(1)

First it is noted that if

(¢, k),

k— kX > 1, then Dy, = 0,

sincen € D impliesl ( ) = k; and by design of CRS-T:

Now con3|de|1<: such thaﬂk—k;] < 1 and decompose I (o (1), fic/ ) < I(Ocr (1), fic/r1) /(1 + €).

D, depending on the value of the td$t(n) € {0,1}:
Dck == ‘Dck U ‘Dck7

DY ={1<n<T:n€Dgy,U

DY ={1<n<T:n€Dgy,U

e(n) =0},
e(n) =1j.

Considern € D!, . Sincel.(n) = kX andU.(n) = 1, by
design of CRS-T we hav&.(n) = 1 for all channels

¢ otherwisec is not selected. By the same reasoning

as above, sincee ¢ A, U.(n) = 1 for all ¢ implies
leo(n) = k% for all ¢. Also, by design of CRS-% = &}
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otherwise(c, k) is not selected. Sincg, k) is selected

dek;r (n) > Qe l s (n) (n) = qcrk* (n) = /j’* sincen §Lf A. By

definition of the indexg, qcx+(n) > p* implies:
te(n)I(0er(n), 1* /i) < f(n) < f(T)

sinceq — I(p,q) is increasing foly > p andn — f(n)
is increasing. By definition of. we have:

tr(n) > tep
=1+ f(T)r "
> (L4 e)f(T)/I(poes 1*/71),
so that:

I(ber(n), @ /i) < IOk, p* /i) /(1 + €).

Therefore, since» — I(p,q) is decreasing fop < ¢
there exists; > 0 (depending or¥) such that:

10k (n) — Ok > .
Therefore:

Dy, € {(e;k)(n) = (¢, k), |Bex(n) — Oex| = m}

so thatE[DL] = O(n~?%) applying Lemmal once
again.

We turn toDY,. SinceU,(n) = 0, we haveg
maxy.|p ks |=1 dekr (n) SO that either (ay ( )
or (b) maxy:. g _gs|=1 dek’ (1) > fic-

Case (a)if 9. (n) < i we have:

Lek: (n)l(éck; (n), fic/mr:) < f(n) < f(T),
= (L4 e)f(T)/1(Ock; > fic/Tk:):

I(Ock: (), fie/7h2) < 1(Bcke fie/rr:)/ (1 +€). (15)
Case (b)considert’ such thatk’ — k2| = 1, if gepr(n) >
e, then:

tor ()1 (Der (n), fic /i) < f(n) < f(T),
> (L +e)f(T)/T(Ock fic/rr):

(1)

<
e

and sincet . (n)

and sincet . (n)

(16)

Putting [1%) and(1l6) together, we deduce that there must

existn such that:

sup |éck/(n) - 0ck’| > 7,

K|k —kx|<1
and therefore:

D% c {(¢c,k)(n) =arg min

k' |k'—kx|<1
’éck’ (n) - Hck” > 77}7

tck’ (n)u

sup
Bk —kz | <1



and using LemmAal1 a third time we have tatDY, || =
O(n~?2) which concludes the proof. O

A DEVIATION RESULT

The following result proven in[[28][Lemma 2.2] is
reproduced here for completeness.

Lemma 1 ([28]): Lete > 0. Considen X (t));>o 1.i.d.
random variables if0, 1] with common expectatiop.
Define F,, the c-algebra generated byX(t))i<t<n.
Consider a random variablB; € {0,1} such thatB;
is F;—1 measurable for alt > 0, and definet(n) =
Sy By andji(n) = (1/t(n)) > 1, B X;. Let A C N
be a (random) set of instants. Assume that there exists
a sequence of (random) sefd(s))s>1 such that (i)
A C Ugs1A(s), (i) for all s > 1 and alln € A(s),
t(n) > es, (i) |A(s)| <1, and (iv) the event € A(s)
is F,,-measurable. Then for adl > 0:

B[S 1{n € A, Jjiln) — pl > 6}] < —.

€d
n>1

19
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