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Dynamic Rate and Channel Selection
in Cognitive Radio Systems

R. Combes and A. Proutiere
KTH, The Royal Institute of Technology

Abstract— In this paper, we investigate dynamic channel
and rate selection in cognitive radio systems which exploit
a large number of channels free from primary users. In
such systems, transmitters may rapidly change the selected
(channel, rate) pair to opportunistically learn and track
the pair offering the highest throughput. We formulate
the problem of sequential channel and rate selection as an
online optimization problem, and show its equivalence to
a structuredMulti-Armed Bandit problem. The structure
stems from inherent properties of the achieved throughput
as a function of the selected channel and rate. We derive
fundamental performance limits satisfied by any channel
and rate adaptation algorithm, and propose algorithms
that achieve (or approach) these limits. In turn, the pro-
posed algorithms optimally exploit the inherent structure
of the throughput. We illustrate the efficiency of our
algorithms using both test-bed and simulation experiments,
in both stationary and non-stationary radio environments.
In stationary environments, the packet successful trans-
mission probabilities at the various channel and rate
pairs do not evolve over time, whereas in non-stationary
environments, they may evolve. In practical scenarios, the
proposed algorithms are able to track the best channel
and rate quite accurately without the need of any explicit
measurement and feedback of the quality of the various
channels.

I. INTRODUCTION

In cognitive radio systems, radio devices may access
a potentially large number of frequency bands or chan-
nels. An example of such systems are those exploiting
”white space” spectrum, the unused part of the TV/UHF
spectrum (unallocated or not used locally). The FCC
2008 ruling allowed unlicensed devices to use parts of
this spectrum, provided that devices can detect primary
users (TV transmitters and wireless microphones). As a
part of the 2010 ruling [1], FCC mandates the use of a
geolocation database to identify which frequencies are
free from primary users. By querying the geolocation
database, we are guaranteed to obtain a set of channels
free from primary transmitters and we avoid the difficult
problem of sensing primary users.

We consider systems exploiting channels known to be
free from primary users. For the transmission of each

packet, transmitters can select a coding rate from a finite
predefined set (as in 802.11 systems for example) and a
channel from the set of available channels. The outcome
of a packet transmission is random, and the probabilities
of successfully transmitting a packet using the various
(channel, rate) pairs are a priori unknown at the trans-
mitter; they need to be learnt based on trial and error.
These probabilities can vary significantly and randomly
over time and across channels; they also strongly depend
on the chosen coding rate. As a consequence, tracking
the best (channel, coding rate) pair for transmission may
greatly improve the system performance. In this paper,
we aim at designing sequential channel and coding rate
selection schemes that efficiently track the best available
channel and the corresponding coding rate.

As shown in previous works, see e.g. [2], [3], RSSI
(Receive Signal Strength Indicator) is a poor predictor
of channel quality, and hence of the packet successful
transmission probabilities. In OFDM systems for exam-
ple, this stems from the fact that RSSI does not report
the individual signal strength experienced on the various
sub-carriers. In order to accurately estimate the quality of
a wide-band channel, more sophisticated techniques with
specific hardware are needed [4], [5]. But these tech-
niques are not typically supported in current commercial
radio hardware. Instead, we need to infer the quality of
each channel at each transmission rate through probing.
Here we consider 802.11-like systems, where the only
feedback sent from the receiver to the transmitter is
whether a data packet has been successfully received or
not. Hence by probing, we mean that several real data
packets have to be sent on each channel and at each rate
to construct a reliable estimate of the channel quality.
In the design of channel and rate selection schemes, we
then face a classical exploration vs. exploitation trade-off
problem. We need to exploit the (channel, rate) pair that
has offered the best throughput so far, whilst constantly
exploring other pairs in case one of them is actually
optimal.

We rigorously formulate the design of the optimal
sequential (channel, rate) selection algorithms as an
online stochastic optimization problem. In this problem,
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the objective is to maximize the number of packets
successfully sent over a finite time horizon. We show
that this problem reduces to a Multi-Armed Bandit
(MAB) problem [6]. In MAB problems, a decision maker
sequentially selects an action (also called an “arm”), and
observes the corresponding reward. Rewards of a given
arm are random variables with unknown distribution.
The objective is to design sequential action selection
strategies that maximize the expected reward over a
given time horizon. These strategies have to achieve an
optimal trade-off between exploitation (actions that have
provided high rewards so far have to be selected) and
exploration (sub-optimal actions have to be chosen so
as to learn their average rewards). For our (channel,
rate) selection problem, the various arms correspond
to the decisions available at the transmitter to send
packets, i.e., an arm corresponds to a channel and a
coding rate. When a (channel, rate) pair is selected for
a packet transmission, the reward is equal to1 if the
transmission is successful, and equal to0 otherwise. The
average successful packet transmission probabilities at
the various (channel, rate) pairs are unknown, and have
to be learnt.

The MAB problem corresponding to the design of
channel and rate selection mechanisms is referred to
as astructuredMAB problem. It differs from classical
MAB problems. (i) First, the rewards associated with
the various rates on a given channel are stochastically
correlated, i.e., the outcomes of transmissions at different
rates are not independent: for example, if a transmission
at a high rate is successful, it would be also successful at
lower rates. (ii) Then, the average throughputs achieved
at various rates exhibit natural structural properties. For
a given channel, the throughput is an unimodal function
of the selected rate. (iii) In addition, most often, on all
channels, the packet successful transmission probabilities
are close to1 at low rates, and abruptly decrease to0
as the rate increases. This additional structure, referred
to as graphical unimodality, allows us to predict the
outcomes of transmissions on various channels. As we
demonstrate, correlations and (graphical) unimodality are
instrumental in the design of channel and rate selection
mechanisms, and can be exploited to learn and track the
best (channel, rate) pair quickly and efficiently. Finally,
note that most MAB problems consider stationary envi-
ronments, which, for our problem, means that the suc-
cessful packet transmission probabilities for the different
(channel, rate) pairs do not vary over time. In practice,
the transmitter faces a non-stationary environment as
these probabilities could evolve over time. We consider
both stationary and non-stationary radio environments.

In the case of stationary environments, we derive

an upper bound of the expected reward that can be
achieved in structured MAB problems. This provides a
fundamental performance limit thatany (channel, rate)
selection algorithm cannot exceed. This limit quantifies
the inevitable performance loss due to the need to
explore sub-optimal (channel, rate) pairs. It also indicates
the performance gains that can be achieved by devising
schemes that optimally exploit the correlations and the
structural properties of the MAB problem. We present
sequential (channel, rate) selection algorithms that op-
timally exploit the structural properties of the problem:
for our algorithms, we prove that the performance loss
due to the need to explore sub-optimal (channel, rate)
pairs does not depend on the number of available rates.
We also extend our algorithms to non-stationary radio
environments. Finally, we evaluate the performance of
the proposed algorithms using an office white-space
testbed operating in the 500MHz-600MHz band, and
simulation experiments.

To our knowledge, the problem of sequential channel
and rate selection has only been investigated in [3],
where heuristic algorithms have been developed. In
contrast, we formulate and solve this problem rigorously,
i.e., we provide fundamental upper performance bounds
satisfied under any channel and rate selection algorithm
and design optimal algorithms that match these bounds.

Contributions.
• We formulate the design of (channel, rate) selec-

tion algorithms as an online optimization problem,
and establish its equivalence to a structured MAB
problem.

• We derive a performance upper bound satisfied by
any (channel, rate) selection algorithm, depending
on the assumptions made on the structure of the
problem – three scenarios with increasing structure
are considered: 1. no structural assumption is made;
2. the throughput on each channel is a unimodal
function of the rate; 3. the throughput is a graphi-
cally unimodal function of the channel and rate. We
also quantify the performance gains that one may
achieve by exploiting the structural properties of the
problem.

• We propose three (channel, rate) selection algo-
rithms, one for each of the above scenarios, and
analyze their performance in stationary radio envi-
ronments. We prove that our algorithms optimally
exploit the structural properties of the throughputs.

• We briefly discuss the extensions of our algorithms
to non-stationary radio environments.

• Finally, we evaluate the performance of our algo-
rithms using simulation experiments. To this aim,
we use artificially generated traces, as well as traces
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extracted from a white space test-bed operating in
the UHF radio spectrum .

Paper organization.The next section is devoted to the
related work. In Sections III and IV, we formulate the
problem of sequential selection of channel and rate selec-
tion as astructuredbandit problem. Section V presents
fundamental upper performance bounds for this problem.
In Section VI, asymptotically optimal algorithms are
proposed. Section VII deals with non-stationary radio
environments. Section VIII presents numerical experi-
ments to evaluate the performance of our algorithms.

II. RELATED WORK

First observe that the joint channel and rate selection
problem is considerably more difficult than detecting
channels with no primary users as considered in a lot
of recent works, see e.g. [7], [8], [9], [10], [11], [12],
[13]. In some of these papers, a MAB framework has
been used to design primary user detection algorithms.
The presence or the absence of primary users just means
that a channel is either good or bad. When selecting
both channel and rate, the dimension of the problem
becomes larger, and there are multiple and numerous
possible channel states. Primary users are not considered
in our work, as we assume that transmitters can use a
geolocation database to get a list of channels free from
primary users [1].

It should also be observed that most of the work
on dynamic spectrum access considers stationary radio
environments. In [9], [10] for example, the authors use
classical stochastic control techniques (Markov Decision
Processes) to sequentially select a channel for transmis-
sion. The underlying assumption is that the environment
is stationary, i.e., the packet successful transmission
probabilities do not evolve over time. In this paper,
both stationary and non-stationary radio environments
are explored. Test-bed experiments actually suggest that
the environment is non-stationary in practice, even in
networks where nodes do not move such as indoor
offices, see e.g. [3].

Our problem resembles the rate adaptation problem in
802.11 systems, see e.g. [14], [15], [16]. But again, our
problem has one additional dimension (a channel has to
be selected): in turn, the number of available decisions
at the transmitter is much larger than in 802.11 systems
where only the rate has to be chosen. Rate adaptation
algorithms are not applicable when the channel can also
be selected for each packet transmission. This is due
to the fact that the transmitter does not continuously
monitor the same channel (as in 802.11 systems), and has
to switch channels often to discover the best (channel,
rate) pair as rapidly as possible.

There is an abundant literature on MAB problems,
and engineers have applied these problems to dynamic
spectrum access [8], [10], [11], [17]. Most existing
theoretical results, see [18] for a recent survey, are con-
cerned withunstructuredMAB problems, i.e., problems
where the average reward associated with the various
decisions are not related. For this kind of problems,
Lai and Robbins [6] derived an asymptotic lower bound
on regret and also designed optimal sequential decision
algorithms. When the average rewards are structured (as
this is the case for our problem), the design of optimal
decision algorithms is more challenging, see e.g. [18].
Non-stationary environments have not been extensively
studied in the bandit literature: Most often unstructured
MAB only are analyzed, see [19], [20], [21].

To our knowledge, the only work dealing with joint
(channel, rate) selection is [3]. However there, the struc-
tural properties of the corresponding MAB problem
had not been identified, and the authors only proposed
algorithms based on heuristics. This contrasts with the
present work: we rigorously determine fundamental lim-
its satisfied by any (channel, rate) adaptation algorithm,
and propose algorithms approaching these limits.

III. M ODELS

We consider a single link (a transmitter-receiver pair).
At time 0, the link becomes active and the transmitter
starts sending packets to the receiver. For each packet,
the transmitter selects a channel from a finite setC =
{1, . . . , C}, and a coding and modulation scheme from
a finite setK = {1, . . . ,K}. The transmission rate when
using coding and modulation schemek is denoted by
rk and we define the set of ratesR = {rk, k ∈ K}.
R is ordered, i.e.,r1 < r2 < . . . < rK . After a
packet is sent, the transmitter is informed of whether the
transmission has been successful. Based on the observed
past transmission successes and failures at the various
channels and rates, the transmitter has to select a channel
and rate pair for the next packet transmission. LetΠ
denote the set of all possible sequential (channel, rate)
selection schemes. Packets are assumed to be of equal
size, and without loss of generality, for anyk, the
duration of a packet transmission at raterk is 1/rk.

A. Channel models

For the i-th packet transmission on channelc at
rate rk, a binary random variableXck(i) represents
the success (Xck(i) = 1) or failure (Xck(i) = 0)
of the transmission.E[Xck(i)] refers to as the packet
successful transmission probability on channelc at rate
rk (i.e., it is the packet reception rate). We consider
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both stationary and non-stationary radio environments. In
stationary environments, the success transmission prob-
abilities on the various channels and at different rates
do not evolve over time. This arises when the system
considered is static (in particular, the transmitter and
receiver do not move). In non-stationary environments,
success transmission probabilities can evolve over time.
Unless otherwise specified, we consider stationary radio
environments. Non-stationary environments are treated
in Section VII.

We assume thatXck(i), i = 1, 2, . . ., are independent
and identically distributed, and we denote byθck the
success transmission probability on channelc at raterk:
θck = E[Xck(i)]. We verified that the i.i.d. assumption
holds in our test-bed and simulation framework. De-
note by (c⋆, k⋆) the optimal (channel, rate) pair, i.e.,
(c⋆, k⋆) ∈ argmaxc,k rkθck. To simplify the exposition
and the notation, we assume that the optimal (channel,
rate) pair is unique, i.e.,rk⋆θc⋆k⋆ > rkθck, for all
(c, k) 6= (c⋆, k⋆). Our analysis can be extended in an
easy way to scenarios where the optimal channel and rate
pair is not unique. Note however that scenarios where
different channel and rate pairs yield exactly the same
throughput should happen very rarely in practice. We
further introduce, for any channelc, the optimal rate
rk⋆

c
, i.e., (c, k⋆c ) ∈ argmaxk rkθck. Again for simplicity,

we assume that on any channel, the optimal rate is
unique:rk⋆

c
θck⋆

c
> rkθck, for all k 6= k⋆c . The throughput

achieved using (channel, rate) pair(c, k) is denoted by
µck = rkθck. The maximum throughput on channelc
is µ⋆

c = µck⋆
c
, and the throughput achieved using the

optimal (channel, rate) pair isµ⋆ = µ⋆
c⋆ = µc⋆k⋆ .

Although we do not account for the presence of
primary users in this work, we could actually model
scenarios where on each channelc, primary users occupy
the channel with some fixed probabilityζc, and in an
i.i.d. manner across time. Indeed in such scenarios, we
just need to replaceθck by (1 − ζc)θck. If the primary
users occupy channels for long periods of time (not in an
i.i.d. manner), the analysis would be significantly more
challenging. This kind of situations is investigated in [9]
for example.

B. Structural properties

The successful transmission probabilitiesθ =
(θck, c ∈ C, k ∈ K) are initially unknown at the
transmitter, and have to be learnt. When the number
of (channel, rate) pairs grows large, learning the best
pair for transmission then becomes really challenging.
Fortunately, the outcomes of transmissions using the
various (channel, rate) pairs exhibit structural properties

that can be exploited to speed up the learning process.
To emphasize the importance of exploiting the structural
properties, we consider three scenarios with increasing
structure.

1) Scenario 1 – No structure:If no structural assump-
tions are made regarding the successful transmission
probabilities, thenθ ∈ [0, 1]C×K . In such scenarios, we
will show that the performance loss due to the need to
explore sub-optimal (channel, rate) pairs scales linearly
with the number of channels and rates.

2) Scenario 2 – Unimodality:First observe that the
successes and failures of transmissions on a given chan-
nel at various rates are statistically correlated. Indeed,
if a transmission is successful at a high rate, it has
to be successful at a lower rate. Similarly, if a low-
rate transmission fails, then transmitting at a higher rate
would also fail. Formally this means that for any channel
c, θc = (θc1, . . . , θcK) ∈ T , whereT = {η ∈ [0, 1]K :
η1 ≥ . . . ≥ ηK}. Then, in practice, it has been observed
(and this is confirmed in our numerical experiments)
that the throughput achieved on a given channel is a
unimodal function of the transmission rate, see e.g. [5],
[16]. In other words, for any channelc, θc ∈ U , where
U = {η ∈ [0, 1]K : ∃k1, r1η1 < . . . < rk1

ηk1
, rk1

ηk1
>

rk1+1ηk1+1 > . . . > rKηK}. In summary in Scenario 2,
for any channelc, θc ∈ T ∩ U .

3) Scenario 3 – Graphical unimodality:We further
observe (see Section VIII) that on a given channel,
the throughput first grows linearly with the rate (the
successful transmission probability is close to 1), and
then abruptly decreases to 0. This observation has been
made in earlier work, see [14] (the author refers to
this scenario as thesteep throughputscenario), [5].
This knowledge can be exploited to build a relationship
between the throughputs achieved on various channels.
Indeed, for example, the throughputs observed on two
different channels are roughly identical in their growth
phase (when the rates are low and the success proba-
bilities are close to 1). To exploit this observation, we
remark that if it holds, the throughput is agraphically
unimodalfunction of the (channel, rate) pair as defined
below.

We first construct a directed graphG = (V,E) whose
vertices correspond to the (channel, rate) pairs. When
(d, d′) ∈ E, we say that the decisiond′ is a neighbor of
decisiond, and we defineN (d) = {d′ ∈ V : (d, d′) ∈
E} as the set of neighbors ofd. The throughput or
average reward of decisiond = (c, k) is denoted by
µd = rkθck. Graphical unimodality expresses the fact
that when the optimal decision isd⋆ = (c⋆, k⋆), then for
any d ∈ V , there exists a path inG from d to d⋆ along
which the expected reward is strictly increasing. In other
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words there is nolocal maximum in terms of expected
reward except atd⋆. The notion of locality is defined
through that of neighborhoodN (d), d ∈ V . Formally,
θ ∈ UG, whereUG is the set of successful transmission
probabilitiesθ ∈ [0, 1]C×K such that, ifd⋆ = (c⋆, k⋆) ∈
argmax(c,k) rkθck, for any d = (c, k) ∈ V , there exists
a path(d0 = d, d1, . . . , dp = d⋆) in G such that for any
i = 1, . . . , p, µdi

> µdi−1
.

Let us now complete the construction of graphG. The
set of edgesE is: ((c, k), (c, k − 1)), ((c, k), (c, k + 1))
and ((c, k), (c′, k)), ((c, k), (c′, k + 1)) for all (channel,
rate) pair(c, k), and allc′. An example of such a graph
G is presented in Figure 1 – for 2 channels and 4 rates.
When the above observation made onθ holds (steep
scenario as defined in [14]), it is easy to check that
the throughput is a graphically unimodal function (w.r.t.
graphG) of the channel and rate. In all practical cases,
beyond the steep throughput scenario, we have actually
observed that the graphG as constructed above had
enough edges to guarantee the graphical unimodality of
the throughput, see Section VIII.

Fig. 1

EXAMPLE OF A GRAPH PROVIDING UNIMODALITY OF THE

THROUGHPUT.

In summary, in Scenario 3, we assume thatθ ∈ T C ∩
UG. Note that there is more structure in Scenario 3 than
in Scenario 2: ifθ ∈ T C∩UG, then for anyc, θc ∈ T ∩U .

Remark 1:Note that the sharp decrease of the
throughput when the rate increases may not hold in
some scenarios as observed in several papers. The sharp
transition of the reception rate motivates the use of
graphical unimodality, but the latter is more general,
and may hold even in absence of this sharp transition.
Actually, we are free to design the graphG, and adapt
its topology depending on the specificity of the radio
environment so as to get graphical unimodality.

Remark 2:The notion of graphical unimodality is
generic. Our approach consists in constructing a minimal
graphG combining structural properties satisfied by the
throughput as a function of the (channel, rate) pair,
and results from experiments run off-line, so that the
throughput is graphically unimodal w.r.t.G. It should
be observed that in MIMO systems (e.g. as in 802.11n
and subsequent standards), the throughput is no longer
a unimodal function of the rate (due to the different

available MIMO modes, with single or multiple streams).
The proposed framework can be adapted to account
for the various MIMO modes. To this aim, the set of
decisions would correspond to the set of all possible
(channel, MIMO mode, rate) triplets, and the graph
G would be constructed so that the throughput is a
graphically unimodal function of these triplets.

IV. OBJECTIVES AND MULTI -ARMED BANDITS

Our goal is to devise a sequential (channel, rate)
selection scheme that maximizes the number of packets
successfully transmitted over a finite time horizon. Such
a design can be formulated as an online stochastic
optimization problem. The choice of the time horizon,
denoted byT , is not really important as long as during
time intervalT , a large number of packets can be sent
– so that inferring the success transmission probabilities
efficiently is possible.

Consider a rate adaption schemeπ ∈ Π that selects
(channel, rate) pair(cπ(t), kπ(t)) for the t-th packet
transmission. The number of packetsγπ(T ) that have
been successfully sent under algorithmπ up to timeT
is: γπ(T ) =

∑

c,k

∑sπ
ck
(T )

i=1 Xck(i), wheresπck(T ) is the
number of transmission attempts on channelc at rate
rk before timeT . The sck(T )’s are random variables
(since the rates selected underπ depend on the past
random successes and failures), and satisfy the following
constraint:

∑

c,k

sπck(T )×
1

rk
≤ T.

Wald’s lemma implies that the expected number of
packets successfully sent up to timeT is: E[γπ(T )] =
∑

c,k E[s
π
c,k(T )]θck. Thus, our objective is to design

an algorithm solving the following online stochastic
optimization problem:

max
π∈Π

∑

c,k E[s
π
ck(T )]θck, (1)

s.t.
∑

c,k s
π
ck(T )×

1
rk

≤ T, ∀c, k, sπck(T ) ∈ N.

A. An equivalent Multi-Armed Bandit (MAB) problem

Next we show that the above online stochastic opti-
mization problem is equivalent to a Multi-Armed Bandit
(MAB) problem.

1) An alternative system:Without loss of generality,
we assume that time can be divided into slots whose
durations are such that for anyk, the time it takes to
transmit one packet at raterk corresponds to an integer
number of slots. Under this convention, the optimization
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problem (1) can be written as:

max
π∈Π

∑

c,k E[t
π
ck(T )]rkθck, (2)

s.t.
∑

c,k t
π
ck(T ) ≤ T,

∀c, k, tπck(T ) ∈
1
rk
N = { u

rk
, u ∈ N},

where tπck(T ) = sπck(T )/rk represents the amount of
time (in slots) that the transmitter spends, beforeT , on
sending packets on channelc at raterk. The constraint
tck(T ) ∈

1
rk
N indicates that when a rate is selected, this

rate selection remains the same for the next1/rk slots.
By relaxing this constraint, we obtain an optimization
problem corresponding to a MAB problem. Indeed, con-
sider now an alternative system where rate selection is
madeeveryslot. If at any given slot, (channel, rate) pair
(c, k) is selected for thei-th times, then ifXck(i) = 1,
the transmitter successfully sendsrk bits in this slot,
and if Xck(i) = 0, then no bit are received. A (channel,
rate) selection algorithm then decides in each slot which
(channel, rate) pair to use. There is a natural mapping
between rate selection algorithms in the original system
and in the alternative system: letπ ∈ Π, if for the t-th
packet transmission, raterk is selected underπ in the
original system, thenπ selects the same raterk in the
t-th slot.

For the alternative system, the objective is to design
π ∈ Π solving the following optimization problem,
which can be interpreted as a relaxation of (2).

max
π∈Π

∑

c,k E[t
π
ck(T )]rkθck, (3)

s.t.
∑

c,k t
π
ck(T ) ≤ T,

∀c, k, tπck(T ) ∈ N.

The above optimization problem corresponds to a MAB
problem, where in each slot a decision is taken (i.e., a
channel and a rate are selected), and where when(c, k)
is chosen, the obtained reward isrk with probability θck
and 0 with probability1− θck.

2) Regrets:We quantify the performance of an algo-
rithm π ∈ Π in both original and alternative systems
through the notion ofregret. The regret up to slotT
compares the performance ofπ to that achieved by an
algorithm always selecting the best (channel, rate) pair.
If the parameterθ = (θck, c, k) was known, then in both
systems, it would be optimal to always select (channel,
rate) pair(c⋆, k⋆). The regret of algorithmπ up to time
slot T in the original system is then defined by:

Rπ
1 (T ) = θc⋆k⋆⌊rk⋆T ⌋ −

∑

c,k

θckE[s
π
ck(T )],

where⌊x⌋ denotes the largest integer smaller thanx.
The regret of algorithmπ up to time slotT in the

alternative system is similarly defined by:

Rπ(T ) = θc⋆k⋆rk⋆T −
∑

c,k

θckrkE[t
π
ck(T )].

3) Asymptotic equivalence:In the next section, we
show that an asymptotic lower bound for the regret
Rπ(T ) is of the formc(θ) log(T ) wherec(θ) is a strictly
positive constant that we can explicitly characterize. It
means that for allπ ∈ Π, lim infT→∞Rπ(T )/ log(T ) ≥
c(θ). It can be also shown that there exists an al-
gorithm π⋆ ∈ Π that actually achieves this lower
bound in the alternative system, in the sense that
lim supT→∞Rπ⋆

(T )/ log(T ) ≤ c(θ). In such a case,
we say thatπ⋆ is asymptotically optimal. The following
proposition states that actually, the same lower bound
is valid in the original system, and that any asymptoti-
cally optimal algorithm in the alternative system is also
asymptotically optimal in the original system.

Proposition 1: Let π ∈ Π. For anyβ > 0, we have:

lim inf
T→∞

Rπ(T )

log(T )
≥ β =⇒ lim inf

T→∞

Rπ
1 (T )

log(T )
≥ β,

and

lim sup
T→∞

Rπ(T )

log(T )
≤ β =⇒ lim sup

T→∞

Rπ
1 (T )

log(T )
≤ β.

Proof. Let T > 0. By time T , we know that there
have been at least⌊Tr1⌋ transmissions, but no more than
⌈TrK⌉. Also observe that both regretsRπ andRπ

1 are
increasing functions of time. We deduce that:

Rπ(⌊Tr1⌋) ≤ Rπ
1 (T ) ≤ Rπ(⌈TrK⌉).

Now

lim inf
T→∞

Rπ
1 (T )

log(T )
≥ lim inf

T→∞

Rπ(⌊Tr1⌋)

log(T )

= lim inf
T→∞

Rπ(⌊Tr1⌋)

log(⌊Tr1⌋)
≥ β.

The second statement can be derived similarly. �

B. MAB problems

Instead of trying to solve (1), we rather focus on
analyzing the MAB problem (3). We know that optimal
algorithms for (3) will also be optimal for the original
problem. The nature of the MAB problem (3) depends on
the structural assumption made on the successful trans-
mission probabilitiesθ. In absence of such assumption
(Scenario 1), we get a classical MAB problem where
the rewards provided by all decisions are independent.
In Scenarios 2 and 3, we get astructuredMAB problem,
as we know a priori thatθ belongs to a structured set,
which helps learning the best (channel, rate) pair. Next



7

we summarize the MAB problems obtained in the three
different scenarios.

We have a set{1, . . . , C} × {1, . . . ,K} of possible
decisions (i.e., (channel,rate) pairs). If decision(c, k) is
taken for thei-th time, we receive a rewardrkXck(i).
(Xck(i), i = 1, 2, ...) are i.i.d. with Bernoulli distribution
with mean θck. The objective is to design a decision
scheme minimizing the regretRπ(T ) over all possible
algorithms π ∈ Π. The three MAB problems differ
depending on the structural assumptions made onθ.

Unstructured MAB (PI). No assumption is made onθ:
θ ∈ [0, 1]C×K .

Structured MAB (PU ). We assume thatθc ∈ T ∩U for
all channelc.

Structured MAB (PGU ). We assume thatθ ∈ T C ∩UG.

V. REGRET LOWER BOUNDS

In this section, we derive an asymptotic (asT grows
large) lower bound of the regretRπ(T ) satisfied by any
algorithm π ∈ Π in the three MAB bandit problems
(PI), (PU ), and (PGU ). These lower bounds provide
insightful theoretical performance limits satisfied by any
(channel, rate) selection scheme. By comparing the lower
bounds derived for the three problems, we also quantify
the performance gains that can be achieved by smartly
exploiting the (a priori) known structure.

A. Unstructured MAB(PI)

The regret lower bound for MAB problem(PI) can
be derived using the direct technique used by Lai and
Robbins [6]. Note that the only difference between(PI)
and the classical MAB problems [6] lies in the fact that
in (PI), we know that the average reward of decision
(c, k) is of the formrkθck for knownrk. The analysis of
(PI) is then similar to that of classical bandit problems.

We first introduce the notion of uniformly good al-
gorithms. An algorithmπ is uniformly good, if for all
parametersθ, for any α > 0, we have1: E[tπck(T )] =
o(Tα),∀(c, k) 6= (c⋆, k⋆), wheretπck(T ) is the number of
times (channel, rate) pair(c, k) has been chosen up to
theT -th decision, and(c⋆, k⋆) is the optimal channel and
rate pair (it depends onθ). Uniformly good algorithms
exist as we shall see later on.

Let N = {k : µ⋆ ≤ rk} – note thatN depends on
θ. There existsk0 such thatN = {k0, . . . ,K}, with the
conventionk0 = K + 1 if N = ∅. Note that ifk < k0,
then for any channelc, rk⋆θck⋆ > rk, which means that
even if all transmissions at raterk on channelc were

1f(T ) = o(g(T )) means thatlimT→∞ f(T )/g(T ) = 0.

successful, i.e.,θck = 1, rate rk would be sub-optimal.
Hence, there is no need to select raterk to discover this
fact, since by only selecting raterk⋆ on channelc⋆, we
get to know whetherrk⋆θc⋆k⋆ > rk ≥ rkθk.

Finally, we introduce the Kullback-Leibler (KL) diver-
gence, a well-known measure for dissimilarity between
two distributions. When we compare two Bernoulli dis-
tributions with respective averagesp and q, the KL
divergence is:I(p, q) = p log p

q
+ (1− p) log 1−p

1−q
.

Theorem 1:Let π ∈ Π be a uniformly good rate
selection algorithm for MAB problem (PI ). We have:
lim infT→∞

Rπ(T )
log(T ) ≥ cI(θ), where

cI(θ) =

K
∑

k=k0:k 6=k⋆

µ⋆ − rkθc⋆k

I(θc⋆k,
µ⋆

rk
)
+

∑

c 6=c⋆

K
∑

k=k0

µ⋆ − rkθck

I(θck,
µ⋆

rk
)
.

The proof of the previous theorem is similar to that of
the regret lower bound in [6], and is omitted here. In view
of this result, if we do not exploit structural properties
of the problem, then the regret of any algorithm scales
at least asCK log(T ). Hence, when the number of
channels and rates grow large, no algorithm is able to
learn the best (channel, rate) pair rapidly and efficiently.

B. Structured MAB(PU )

To derive a regret lower bound for MAB problem
(PU ), we need to introduce additional notations. We
defineM = N ∩ {k⋆ − 1, k⋆ + 1}. For any channel
c, let Nc = {k : µ⋆

c ≤ rk}, and k0c such thatNc =
{k0c, . . . ,K}, with the conventionk0c = K + 1 if
Nc = ∅. Observe that for anyc 6= c⋆, k0c ≤ k0. Let
Mc = Nc ∩ {k⋆c − 1, k⋆c + 1}. The following theorem is
proved in [22]. Due to space limitations, all the proofs
are presented in [22].

Theorem 2:Let π ∈ Π be a uniformly good (channel,
rate) selection algorithm for MAB problem (PU ). We
have: lim infT→∞

Rπ(T )
log(T ) ≥ cU (θ), where cU (θ) is the

optimal value of the following optimization problem:

inf
αck≥0,∀k,c

∑

(c,k)6=(c⋆,k⋆)

αck(µ
⋆ − µck)

s.t. ∀k ∈ M,αc⋆kI(θc⋆k,
µ⋆

rk
) ≥ 1,

∀c 6= c⋆ : k⋆c ≥ k0, αck⋆
c
I(θck⋆

c
,
µ⋆

rk⋆
c

) ≥ 1, and

∀k ≥ k0, k 6= k⋆c , inf
λc∈Ck

∑

l

αclI(θcl, λcl) ≥ 1,

whereCk = {λc ∈ U ∩ T : rkλck > µ⋆}.

The above theorem does not provide a fully explicit
regret lower bound. In particular, it remains unclear how
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this lower bound scales with the numbers of rates and
channels. In the following theorem, we further exploit
the structural properties of the MAB problem(PU ) to
show thatcU (θ) scales at most linearly with the number
of channels, and does not scale with the number of rates.

Theorem 3:We havecU (θ) ≤ c′U (θ) where

c′U (θ) =
∑

k∈M

µ⋆ − µc⋆k

I(θc⋆k,
µ⋆

rk
)

+
∑

c 6=c⋆

[

µ⋆ − µck⋆
c

min{I(θck⋆
c
, µ⋆

rk⋆
c

), I(θck⋆
c
, θck⋆

c
− δc

rk⋆
c

)}

+
∑

k∈Mc

µ⋆ − µck

I(θck, θck +
δc
rk
)

]

. (4)

and
δc = min

k∈{k⋆
c
−1,k⋆

c
+1}

(µck⋆
c
− µck)/2.

In particular, c′U (θ) is proportional to the number of
channels and independent of the number of rates.

From the above analysis, we conclude that the mini-
mum regret for the MAB problem(PU ) scales at most as
3C log(T ). Hence we expect that exploiting the structure
of the problem (the fact thatθc ∈ T ∩U for any channel
c) may significantly improve the system performance.
Indeed we expect a regret that does not depend on the
number of available rates. In the next section, we design
an algorithm with such a regret.

C. Structured MAB problem(PGU )

Graphical unimodal bandit problems have been re-
cently studied in [23], [24]. A regret lower bound is
derived in [24]. The only difference between our graph-
ically unimodal MAB problem and those considered
in [24] is that we consider directed graphs, but the
analysis is similar. We use here the notation introduced
in §III-B.3, and recall thatN = {k : µ⋆ ≤ rk}. For any
(c, k), we defineN ′(c, k) = N (c, k)∩N . N ′(c, k) is the
set of (channel, rate) pairs that are neighbors of vertex
(c, k), and that need to be explored if one wants to know
whether they provide better throughput than(c, k).

Theorem 4:[24] Let π ∈ Π be a uniformly good
(channel, rate) selection algorithm for MAB problem
(PGU ). We have:

lim inf
T→+∞

Rπ(T )

log(T )
≥ cGU (θ), (5)

where

cGU (θ) =
∑

(c,k)∈N ′(c⋆,k⋆)

µ⋆ − µck

I(θck,
µ⋆

rk
)
.

In view of the above theorem, for the MAB problem
(PGU ), the minimum regret scales asγ log(T ), whereγ

is γ is the maximum node degree in the graphG. Note
that for our graphG, γ ≤ 2C. Hence, by exploiting the
graphical unimodal structure, we may expect to design
algorithms whose regret does not depend on the number
of available rates. In the next section, an algorithm
whose regret matches the lower bound of Theorem 4
is proposed.

In this section, we have shown that the regret lower
bound can be significantly improved when structural
assumptions are made, i.e.,cGU (θ) ≤ cU (θ) ≤ cI(θ). By
exploiting the structure of the problem, we may actually
design algorithms whose regrets does not depend on the
number of available rates. Such algorithms do not exist
when the structure is not exploited (see Theorem 1).

VI. A LGORITHMS

In this section, we present algorithms for the three
MAB problems (PI), (PU ), and (PGU ), and analyze
their regrets. For the two structured MAB problems, the
proposed algorithms exhibit a regret that does not depend
on the number of available rates.

A. The KL-UCB algorithm for MAB problem(PI)

Classical unstructured bandit problems have been ex-
tensively studied in the past, and numerous efficient
algorithms have been proposed. We build on this pre-
vious work, and present a simple extension of KL-
UCB algorithm [21] to the MAB problem(PI). This
algorithm does not exploit any structural properties, and
is asymptotically optimal: its regret matches the lower
bound derived in Theorem 1.

Under the KL-UCB algorithm, each (channel, rate)
pair (c, k) is associated with an indexqck(n) for the
(n+ 1)-th packet transmission:

qck(n) =max{q ∈ [0, rk] :

tck(n)I(
µ̂ck(n)

rk
,
q

rk
) ≤ log(n) + 3 log log(n)},

wheretck(n) denotes the number of times(c, k) has been
selected up to then-th transmission, and

µ̂ck(n) =
1

tck(n)

tck(n)
∑

i=1

rkXck(i),

is the empirical throughput or reward of (channel, rate)
pair (c, k) up to then-th transmission. The algorithm
selects the (channel, rate) pair with highest index:

Algorithm 1 KL-UCB

Forn = 0, . . . , CK−1 (initialization): for the(n+1)-th
transmission, select (channel, rate) pair(c, k)(n + 1) =
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(c′+1, k′+1) wheren = Kc′+k′, k′ ∈ {0, . . . ,K−1}.
For n ≥ CK, for the (n + 1)-th transmission, select
(c, k)(n+1) where(c, k)(n+1) ∈ argmax(c,k) qck(n).

The rationale behind the design of KL-UCB is the
same as that of the classical UCB algorithm. We con-
struct an index for each (channel, rate) pair, which
in turn constitutes an upper confidence bound of the
corresponding throughput. By selecting the pair with the
highest upper confidence bound, we force the exploration
of suboptimal pairs if the latter have not been explored
enough (in such a case, the upper confidence bound of
a suboptimal pair can be higher than that of the optimal
pair). KL-UCB is designed so that the number of times a
suboptimal pair is selected matches the optimal number
of times it is explored in the regret lower bound. In fact,
KL-UCB is known to be asymptotically optimal in clas-
sical bandit problems [21]. It can be easily established
that its extension is also optimal for the problem(PI):

Theorem 5:For anyθ ∈ [0, 1]C×K , the regret of the
π = KL-UCB algorithm satisfies:

lim sup
T→∞

Rπ(T )

log(T )
≤ cI(θ),

In particular, the regret under KL-UCB scales linearly
with the numbers of channels and rates. When the later
become large, the performance of KL-UCB can be quite
poor.

Note that one may actually derive finite-time upper
bounds on the regret of KL-UCB, as done in [21]. KL-
UCB is asymptotically optimal, but also provides good
performance over a finite time horizon.

Finally, regarding the computational complexity of
implementing KL-UCB, note that we just require to
maintain an index for each pair, which requires a number
of operations that scales asCK after each transmission.
The comparison between the various indexes can be done
with CK log(CK) operations.

B. The CRS-T algorithm for MAB problem(PU )

Next, we present CRS-T (Channel and Rate Sampling
with Tests), an algorithm that exploits the structure of
the MAB problem (PU ), i.e., the fact that on each
channel, the throughput is a unimodal function of the
rate. To describe our algorithm, we introduce the fol-
lowing notations. After then-th transmission, the rate
with the highest average empirical throughput on channel
c is referred to as theleader on channelc, and is
lc(n) = argmaxk µ̂ck(n). The global leader l(n) is
the (channel, rate) pair with highest average empirical
throughput:l(n) = argmax(c,k) µ̂ck(n).

Similar to the KL-UCB indexqck(n), we define the
lower confidence boundq

ck
(n) as:

q
ck
(n) =min{q ∈ [0, rk] :

tck(n)I(
µ̂ck(n)

rk
,
q

rk
) ≤ log(n) + 3 log log(n)},

We introduce a statistical test, which will be used to
assess whether the leader on channelc, lc(n), provides
a larger reward than its neighborslc(n)−1, lc(n)+1 on
the same channel. Define the test for channelc at time
n throughUc(n) :

Uc(n) = 1{q
clc(n)

(n) ≥ sup
k:|k−lc(n)|=1

qck(n)}

The test can be interpreted as follows.Uc(n) = 1
means thatlc(n) is better than its neighbors with high
probability, andUc(n) = 0 means that we do not have
enough samples to determine whetherlc(n) is better than
its neighbors. After then-th packet transmission, we
defineU(n) = {c : Uc(n) = 0} the set of channels
for which we cannot determine whether the leaderlc(n)
corresponds to the best ratek⋆c on this channel.

The sequential decisions under the CRS-T algorithm
are based on the indexes of the various (channel, rate)
pairs, and can be easily implemented. The indexbk(n)
of decision(c, k) for the (n+ 1)-th packet transmission
is:

bck(n) = qck(n)1{k = lc(n)},

where qck(n) is the index used in the KL-UCB algo-
rithm. Note that the index of decision(c, k) is equal to
0 if k is not the leader on channelc. The pseudo-code
for CRS-T is given below (each time the decision is
ambiguous, ties are broken arbitrarily).

Algorithm 2 CRS-T
Forn = 0, . . . , CK−1 (initialization): for the(n+1)-th
transmission, select (channel, rate) pair(c, k)(n + 1) =
(c′+1, k′+1) wheren = Kc′+k′, k′ ∈ {0, . . . ,K−1}.
For n ≥ CK: for the (n + 1)-th transmission, select
(c, k)(n + 1) where

• if U(n) 6= ∅, thenc(n+ 1) ∈ U(n) and
k(n+ 1) ∈ argmink′:|k′−lc(n+1)(n)|≤1 tc(n+1)k′(n);

• else(c, k)(n + 1) ∈ argmaxc′,k′ bc′k′(n).

The design of the CRS-T algorithm is motivated by
the following objectives: (1) For all channels, we need
to play the leader and all its neighbours until we can
determine with high probability that the leaderlc(n) is
the best ratek⋆c . (2) Once we have determined thatlc(n)
is k⋆c for all channels, then we play the leader of the
channel with the largest index, i.e we apply KL-UCB
restricted to the set of leaders.
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Define ∆ = min(c,k)mink′:|k′−k|=1 |µck − µck′| the
minimal separation between two neighboring rates on
any channel and̃µc = (µck⋆

c
+max|k−k⋆

c
|=1 µck)/2. The

next theorem, proved in [22], provides a finite time
upper bound on the regret under CRS-T. The asymptotic
regretlog(T )cCRS-T(θ) scales linearly with the number of
channels, but is independent of the number of available
rates. In particular, CRS-T exploits the structure of the
MAB problem (PU ).

Theorem 6:For anyθ such that for allc, θc ∈ T ∩U ,
and for all ǫ > 0, the regret of the CRS-T algorithm
satisfies:

RCRS-T(T ) ≤ (1 + ǫ)cCRS-T(θ) log(T )

+ Γǫ(∆
−2 + log(log(T ))),

whereΓǫ > 0 depends onǫ, C, K andR but not onθ,
and

cCRS-T(θ) =

C
∑

c=1

τ−1
c

∑

k:|k−k⋆
c
|≤1

(µ⋆ − µck),

with

τc = min

(

min
k:|k−k⋆

c
|≤1

I(θck, µ̃c/rk), I(θck⋆
c
, µ⋆/rk⋆

c
)

)

The regret under CRS-T does not depend on the
number of available rates, and hence exploits (at least
asymptotically) the unimodal structure of(PU ). The
computational complexity of CRS-T is similar to that
of KL-UCB because it essentially requires to maintain
the indexes of the various channel and rate pairs: it scales
linearly with CK (up to a logarithmic factor).

C. The KL-UCB-U algorithm for MAB problem(PGU )

Finally, we present KL-UCB-U, an algorithm for
MAB problem (PGU ). KL-UCB-U is a natural exten-
sion of an algorithm proposed in [24] for graphically
unimodal bandits with undirected graphs. This algorithm
is asymptotically optimal (its regret matches the lower
bound derived in Theorem 4).

Recall that the global leader is denoted byl(n) before
the (n + 1)-th transmission. We introducev(c,k)(n) the
number of times that (channel, rate) pair(c, k) has been
the global leader up to then-th transmission:v(c,k)(n) =
∑n

n′=1 1{l(n
′) = (c, k)}. The index associated with de-

cision (c, k) before the(n+ 1)-th transmission is:

bck(n) =max
{

q ∈ [0, rk] : tck(n)I
( µ̂ck(n)

rk
,
q

rk

)

≤ log(vl(n)(n)) + 3 log(log(vl(n)(n)))
}

,

For the(n+ 1)-th transmission, KL-UCB-U selects the
(channel, rate) pair in the neighborhood of the leader
with maximum index. Ties are broken arbitrarily.

Algorithm 3 KL-UCB-U

Forn = 0, . . . , CK−1 (initialization): for the(n+1)-th
transmission, select (channel, rate) pair(c, k)(n + 1) =
(c′+1, k′+1) wheren = Kc′+k′, k′ ∈ {0, . . . ,K−1}.
For n ≥ CK: for the (n + 1)-th transmission, select
(c, k)(n + 1) where:

(c, k)(n+1) =







l(n) if (vl(n)(n)− 1)/γ ∈ N,

arg max
(c,k)∈N (l(n))

bck(n) otherwise.

Remember thatγ is the maximum number neighbors
in G of a given (channel, rate) pair. The KL-UCB-U
algorithm periodically selects the leader to make sure
that the latter is often selected. The design of KL-UCB-
U is based on the lower regret bound derived for the
MAB problem (PGU ). This lower bound implies that
an optimal algorithm explores suboptimal (channel, rate)
pairs a number of times that scales withlog(T ) only
for pairs that are neighbours of the the optimal pair
in the graphG. Hence in KL-UCB-U, the exploration
is restricted to the neighbours of the current leader in
G. As in [24], we can establish that KL-UCB-U is
asymptotically optimal:

Theorem 7:For any θ ∈ T C ∩ UG, the regret of
π =KL-UCB-U satisfies:

lim sup
T→∞

Rπ(T )

log(T )
≤ cGU (θ),

In particular, KL-UCB-U optimally exploits the struc-
ture of MAB problem(PGU ). In turn, if the throughput
is a graphically unimodal function of the (channel, rate)
pair, then KL-UCB-U asymptotically outperforms any
other algorithm, and in particular CRS-T, an algorithm
designed to exploit the unimodal structure per channel
only.

Note that a finite-time regret analysis for KL-UCB-U
is possible as shown in [24]. KL-UCB-U is asymptoti-
cally optimal, but also provides good performance over
a finite time horizon. Finally, again, the computational
complexity of KL-UCB-U is similar to that of KL-UCB.

VII. N ON-STATIONARY RADIO ENVIRONMENTS

In practice, channel conditions may be non-stationary,
i.e., the success probabilities at various (channel, rate)
pair could evolve over time. In many situations, the
evolution over time is rather slow – refer to [3] and
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to Section V for test-bed measurements. These slow
variations allow us to devise (channel,rate) adaptation
schemes that efficiently track the best (channel,rate) pair
for transmission.

We assume that for all(c, k) pairs, the transmissions
outcomesXck(n) , n = 1, 2, . . . are independent, with
expectationθck(n) = E[Xck(n)]. At time n we define
the throughput of(c, k) µck(n) = rkθck(n), the best
throughput µ⋆(n) = maxc,k µck(n) and the optimal
decision(c⋆, r⋆)(n) = argmaxc,k µck(n).

Any algorithm designed for stationary radio environ-
ments can readily be extended to non-stationary environ-
ments. These extensions are obtained by replacing em-
pirical averages by averages over a sliding time window.
Let τ ≥ 1 denote the sliding window size, and define
the empirical reward̂µck(n) as:

µ̂τ
ck(n) =

rk
tτck(n)

n
∑

n′=n−τ+1

Xck(n
′)1{(c, k)(n′) = (c, k)},

where

tτck(n) =

n
∑

n′=n−τ+1

1{(c, k)(n′) = (c, k)},

with the convention̂µτ
ck(n) = 0 if tτck(n) = 0. We also

define the upper confidence index of (channel, rate) pair
(c, k) as:

qτck(n) = max{q ∈ [0, rk] :

I(
µ̂τ
ck(n)

rk
,
q

rk
) ≤ log(τ) + 3 log(log(τ))}.

We define sliding window variants of the algorithms
presented in Section VI by replacingtck(n) by tτck(n),
µ̂ck(n) by µ̂τ

ck(n) and qck(n) by qτck(n). For instance,
KL-UCB with sliding window is the algorithm which
selects(c, k)(n) ∈ argmaxck q

τ
ck(n).

In [25], the authors show that algorithms with sliding
windows efficiently track the best decision over time
provided that the environment evolves relatively slowly.
This is confirmed in [24], where the performance of
algorithms similar to KL-UCB and KL-UCB-U with
sliding window is analyzed. Due to space limitation, we
skip this analysis; refer to [24] for more details.

The way the window sizeτ should be chosen in prac-
tice is dictated by the following remarks. First,τ should
be relatively small compared to the time it takes for the
packet successful transmission probabilities to evolve.
This ensures that the algorithms with sliding window
track the best channel and rate pair. Then,τ should be
sufficiently large so that the throughput of the various
channel and rate pairs could be estimated with precision
using samples collected in an interval of time of duration

τ . Typically 10 or 20 packets sent using the same channel
and rate pair is enough. These two requirements forτ
go in opposite directions, and clearly when the packet
successful transmission probabilities evolve rapidly, an
appropriate design ofτ is not possible. In practice,τ may
be tuned by just observing the way these probabilities
evolve (via off-line preliminary experiments). It is not
necessary to adaptτ over time if the radio environment
does not change (say for example, users stay inside a
building). However, in other scenarios, we may need to
adaptτ .

VIII. N UMERICAL EXPERIMENTS

In this section we numerically illustrate the perfor-
mance of the proposed (channel, rate) selection algo-
rithms. To this aim, we conduct simulation experiments
where our algorithms are tested against channel quality
traces that are either extracted from a test-bed [3], or
artificially generated. In the latter case, we generate
traces based on a widely used statistical model for radio
propagation and on a mapping between channel quality
and probability of packet successful transmission on a
given (channel,rate) pair [5].

A. Traces extracted form a test-bed

In this subsection we present trace-driven experi-
ments using the test-bed described in [3]. The test-
bed is based on a SDR platform (Lyrtech SFF-SDR),
and is located in an indoor office. The PHY layer
is OFDM, as in 802.11a/g/n. There are3 available
rates{4.5, 6, 6.75} Mbps corresponding to QPSK mod-
ulation with respective coding rates{1/2, 2/3, 3/4}.
We consider5 channels in the UHF band centred at
{510, 530, 550, 580, 600} Mhz . The bandwidth of each
channel is10 Mhz, and the packet size is1500 bytes.
The trace duration is600s.

The traces are collected as follows. The transmitter
transmits 10 packets at each rate on a given channel
before moving to the next channel. Each measurement
round (where each (channel, rate) pair is probed) hence
consists of the transmission of10 × 5 × 3 packets, and
lasts less than 1s. This means we sample a given channel
at a given rate once every second. In each round and
for each channel, we calculate, by averaging over 10
packets, the RSSI, the successful packet transmission
probabilities and the goodputs at the 3 different rates.

In Fig.2, we plot the best decision(c⋆, k⋆) as a
function of time. the radio environment is non-stationary,
and the optimal decision remains constant for several
seconds. Since a packet transmission lasts about1ms, the
packet successful transmission probabilities for various
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Fig. 2

TEST-BED: BEST (CHANNEL, RATE) PAIR (c⋆, k⋆)(t) AS A

FUNCTION OF TIME.

decisions stay constant for thousands of packet trans-
missions. Therefore we have quite a lot of statistical
information to find the best decision. Furthermore the
window size used in the tested algorithms should be of
the order of a few seconds – we fix it to 2s.

In Fig.3, we plot the throughput under KL-UCB and
KL-UCB-U algorithms. For the sake of comparison, we
also plotµ⋆(t) the throughput of an Oracle algorithm
that always selects the optimal decision. We also plot
the throughput obtained by choosing the best static
(channel, rate) pair, computed offline. We observe that
selecting the best static pair is clearly sub-optimal, so
that adaptive algorithms can lead to a large gain in
throughput. Both decision algorithms, KL-UCB and KL-
UCB-U, manage to closely follow the best (channel, rate)
pair. KL-UCB-U provides a throughput equal to95% of
that obtained under the Oracle algorithm, whereas the
throughput under KL-UCB is equal to90% of that of
the Oracle algorithm. There is not a huge performance
gap between KL-UCB and KL-UCB-U because there are
few available rates,K = 3. Hence KL-UCB explores
C × K = 15 (channel,rate) pairs, while KL-UCB-U
explores (in the worse case)2C + 1 = 11 pairs. We
will show that increasing the number of available rates
K makes this difference significantly larger.

B. Artificial traces

We also present numerical results based on a widely
used statistical model for radio propagation. Namely, we
assume that the channel is a multi-path Rayleigh fading
channel. When a signal is transmitted, several delayed
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TEST-BED: THROUGHPUTS OF THE VARIOUS ALGORITHMS AS A

FUNCTION OF TIME.

copies of this signal are received and the amplitude
and phase of each delayed copy is an independent
Rayleigh fading process. We use Jakes’ model to sim-
ulate Rayleigh fading with user speed set to match the
time variability of the test-bed trace presented in VIII-A.
This corresponds to static users such as laptops in an
office environment. The expected power of each delayed
path is chosen according to the field measurements
presented in [26].

We assume that OFDM is used, and the mapping
between the strength of received signal on each sub-
carrier and the probability of successful transmission
is calculated by the method presented in [5]. We con-
sider 5 channels with bandwidth20 Mhz in the 2.4
GHz band centred at{2.4, 2.41, 2.42, 2.43, 2.44}GHz,
respectively. Each channel has52 sub-carriers and
the packet size is1500 bytes. We consider8 avail-
able rates:{6, 13, 19.5, 26, 39, 52, 58.5, 65} Mbps, and a
transmitter-receiver pair with an average SNR of20 dB.
The trace length is600 seconds.

We first consider stationary environments, so that a
snapshot of the success probabilities for all (channel,rate)
pairs is drawn and kept constant throughout the simu-
lation. Fig.4 shows the packet successful transmission
probabilities and throughputs of different (channel,rate)
pairs. As announced, graphical unimodality holds: the
throughput on each channel is a unimodal function of
the rate, and given the optimal ratek⋆c on sub-optimal
channelc 6= c⋆, there exists another channelc′ 6= c
such that eitherµc′,k⋆

c
> µc,k⋆

c
or µc′,k⋆

c
+1 > µc,k⋆

c
.

Graphical unimodality results from the fact that we are
in a steep environment as defined in [14]. Fig.5 presents
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rk 6 13 19.5 26 39 52 58.5 65
θ1,k 1 1 1 1 1 0.2 0 0
θ2,k 1 1 1 1 1 1 0.7 0.1
θ3,k 1 1 1 1 1 0.6 0 0
θ4,k 0 0 0 0 0 0 0 0
θ5,k 1 1 0.8 0.2 0 0 0 0
µ1,k 6 13 19.5 26 39 13 0 0
µ2,k 6 13 19.5 26 39 52 41 8
µ3,k 6 13 19.5 26 39 29 0 0
µ4,k 0 0 0 0 0 0 0 0
µ5,k 6 13 16 6 0 0 0 0

Fig. 4

SIMULATION : PACKET SUCCESSFUL TRANSMISSION

PROBABILITIES AND THROUGHPUTS AT DIFFERENT

(CHANNEL,RATE) PAIRS IN A STATIONARY ENVIRONMENT.
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SIMULATION : REGRET OF DIFFERENT DECISION RULES AS A

FUNCTION OF TIME IN A STATIONARY ENVIRONMENT.

the regret of KL-UCB and KL-UCB-U as a function
of time. KL-UCB-U beats KL-UCB and for large time
horizons the regret under KL-UCB-U is roughly half
of that under KL-UCB. Hence exploiting the graphical
unimodal structure significantly helps.

We now turn to non-stationary environments. As
in VIII-A, we present the best pair as a function of
time and the throughputs of different algorithms in Fig.6.
Again KL-UCB-U beats KL-UCB.

For both the test-bed and simulation, the performance
of KL-UCB-U is rather impressive: its throughput is at
least 95% of that of the Oracle, without knowing the
throughputs of the various (channel,rate) pairs before-
hand. This shows that given a good decision rule, the
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SIMULATION : THROUGHPUTS OF THE VARIOUS ALGORITHMS

(ABOVE) AND THE BEST PAIR(c⋆, k⋆) (BELOW) AS A FUNCTION

OF TIME IN A NON-STATIONARY ENVIRONMENT – LOW VARIATION

SPEED.

Speed ×1 ×20 ×100

Static 52 % 45 % 43 %
KL-UCB 90 % 83 % 57 %

KL-UCB-U 96 % 91 % 79 %
Oracle 100 % 100 % 100 %

Fig. 7

IMPACT OF THE SPEED OF VARIATION OF THE SUCCESSFUL

TRANSMISSION PROBABILITIES ON PERFORMANCE IN A

NON-STATIONARY ENVIRONMENT.

selection of channel and rate can be done solely based on
ACK/NACK feedback with excellent performance. This
is critical for real-world systems because feedback of
channel measurements is problematic in practice both in
terms of delay and overhead.

So far, in non-stationary environments, the packet suc-
cessful transmission probabilities were evolving slowly.
Next we vary the speed at which they evolve, by arti-
ficially accelerating our traces by a factor 20 and 100.
Results are presented in Fig. 7. At all speeds, KL-UCB-
U beats KL-UCB, and the performance gap between
the two algorithms increases with the speed. When the
environment changes faster, the performance of KL-
UCB becomes poor, as the algorithm needs to explore
all (channel, rate) pairs, and cannot track the best pair.
On the contrary, KL-UCB-U exploits the structure and
explores less, which makes its performance more robust.
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IX. CONCLUSION

In this paper, we have addressed the problem of joint
channel and rate adaptation in cognitive radio systems.
We have shown that the problem is equivalent to a
structured MAB problem, where the structure stems
from inherent properties of the throughput as a function
of the selected channel and rate. For several assump-
tions on this structure, we have derived fundamental
performance limits satisfied by any sequential (channel,
rate) selection algorithm. For each structure type, we
have also proposed algorithms which are either close
or achieve these limits. Finally we have assessed the
efficiency of the proposed algorithms through trace-
driven experiments and simulations. The two key insights
from our results are: (a) The channel and rate adaptation
problem has a strong structure. This structure can be
exploited to devise algorithms whose performance does
not depend on the number of available rates, and is
close to that of an Oracle algorithm that perfectly knows
the packet successful transmission probabilities at any
available (channel, rate) pair. (b) There exist readily
implementable algorithms which allow almost perfect
channel and rate selection without the need of any
measurement and explicit feedback of the quality of the
various channels.
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[19] L. Kocsis and C. Szepesvári, “Discounted UCB,” inProceed-
ings of the 2dn PASCAL Challenges Workshop, 2006.

[20] J. Y. Yu and S. Mannor, “Piecewise-stationary bandit problems
with side observations,” inProceedings of ICML, 2009.

[21] A. Garivier and O. Cappé, “The KL-UCB algorithm for
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APPENDIX

PROOF OFTHEOREM 2

We derive here the regret lower bounds for the MAB
problem(PU ). To this aim, we apply the techniques used
by Graves and Lai [27] to investigate efficient adaptive
decision rules in controlled Markov chains. We recall
here their general framework. Consider a controlled
Markov chain(Xt)t≥0 on a finite state spaceS with a
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control setU . The transition probabilities given control
u ∈ U are parametrized byθ taking values in a compact
metric spaceΘ: the probability to move from statex
to statey given the controlu and the parameterθ is
p(x, y;u, θ). The parameterθ is not known. The decision
maker is provided with a finite set of stationary control
laws G = {g1, . . . , gK} where each control lawgj
is a mapping fromS to U : when control lawgj is
applied in statex, the applied control isu = gj(x). It
is assumed that if the decision maker always selects the
same control lawg the Markov chain is then irreducible
with stationary distributionπg

θ . Now the reward obtained
when applying controlu in statex is denoted byr(x, u),
so that the expected reward achieved under control law
g is: µθ(g) =

∑

x r(x, g(x))π
g
θ (x). There is an optimal

control law givenθ whose expected reward is denoted
µ⋆
θ ∈ argmaxg∈G µθ(g). Now the objective of the

decision maker is to sequentially control laws so as to
maximize the expected reward up to a given time horizon
T . As for MAB problems, the performance of a decision
scheme can be quantified through the notion of regret
which compares the expected reward to that obtained by
always applying the optimal control law.

We now apply the above framework to our MAB
problem. For(PU ), for all c, the parameterθc takes
values in T ∩ U . The Markov chain has values in
S = {0, r1, . . . , rK}. The set of control laws isG =
{1, . . . , C} × {1, . . . ,K}. These laws are constant, in
the sense that the control applied by control law(c, k)
does not depend on the state of the Markov chain,
and corresponds to selecting (channel, rate) pair(c, k).
The transition probabilities are given as follows: for all
x, y ∈ S,

p(x, y; (c, k), θ) = p(y; (c, k), θ) =

{

θck, if y = rk,
1− θck, if y = 0.

Finally, the rewardr(x, (c, k)) does not depend on the
state and is equal torkθck, which is also the expected
reward obtained by always using control law(c, k).

We now fix θ: ∀c, θc ∈ T ∩ U . DefineI(c,k)(θ, λ) =
I(θck, λck) for any (c, k). Further define the setB(θ)
consisting of allbad parametersλ: ∀c, λc ∈ T ∩U such
that(c⋆, k⋆) is not optimal under parameterλ, but which
are statisticallyindistinguishablefrom θ:

B(θ) = {λ : ∀c,λc ∈ T ∩ U ,

λc⋆k⋆ = θc⋆k⋆ ,max
(c,k)

rkλck > µ⋆},

B(θ) can be written as the union of setsBck(θ) defined
as:

Bck(θ) = {λ ∈ B(θ) : rkλck > rk⋆λc⋆k⋆}.

Note thatBck(θ) = ∅ if rk < rk⋆θc⋆k⋆, hence ifk /∈ N .
By applying Theorem 1 in [27], we know thatcU (θ)

is the minimal value of the following LP:

min
∑

c,k αck(µ
⋆ − rkθck) (6)

s.t. infλ∈B(θ)

∑

(c,k)6=(c⋆,k⋆) αckI
(c,k)(θ, λ) ≥ 1, (7)

αck ≥ 0, ∀(c, k). (8)

Next we detail the constraints (7). These constraints
are equivalent to:

inf
λ∈Bc⋆k(θ)

∑

(c,l)6=(c⋆,k⋆)

αclI
(c,l)(θ, λ) ≥ 1,∀k 6= k⋆ (9)

inf
λ∈Bck⋆

c
(θ)

∑

(c′,l)6=(c⋆,k⋆)

αc′lI
(c′,l)(θ, λ) ≥ 1,∀c 6= c⋆ (10)

inf
λ∈Bck(θ)

∑

(c′,l)6=(c⋆,k⋆)

αc′lI
(c′,l)(θ, λ) ≥ 1,∀c 6= c⋆,∀k 6= k⋆c .

(11)

Constraint (9).We prove that (9) is equivalent to:

min
k∈M

αc⋆kI(θc⋆k,
µ⋆

rk
) ≥ 1. (12)

Observe that ifk < k0 (i.e., if k /∈ N ), thenBc⋆k(θ) = ∅.
Let k ∈ N with k 6= k⋆. Without loss of generality
assume thatk > k⋆. We prove that:

inf
λ∈Bc⋆k(θ)

∑

(c,l)6=(c⋆,k⋆)

αclI
(cl)(θ, λ) =

k
∑

l=k⋆+1

αc⋆lI(θc⋆l,
µ⋆

rl
).

(13)
This is due to the fact that we can always chooseλcl =
θcl for all c 6= c⋆, and to the following two observations:

• for all λ ∈ Bc⋆k(θ), we haveλc⋆k⋆rk⋆ = θc⋆k⋆rk⋆

andλc⋆krk > λc⋆k⋆rk⋆, which using the unimodal-
ity of λ, implies that for anyl ∈ {k⋆, . . . , k},
λc⋆lrl ≥ θc⋆k⋆rk⋆. Hence:

∑

l 6=k⋆

αc⋆lI
(c⋆,l)(θ, λ) ≥

k
∑

l=k⋆+1

αc⋆lI(θl,
µ⋆

rl
).

• For ǫ > 0, define λǫ as follows: for all l ∈
{k⋆, . . . , k}, λc⋆l = (1 + (l − k⋆)ǫ)µ

⋆

rl
, and for

all l /∈ {k⋆, . . . , k}, λc⋆l = θc⋆l. By construction,
λǫ ∈ Bc⋆k(θ), and

lim
ǫ→0

∑

l 6=k⋆

αc⋆lI
(c⋆,l)(θ, λǫ) =

k
∑

l=k⋆+1

αc⋆lI(θl,
µ⋆

rl
).

From (13), we deduce that constraints (7) are equiv-
alent to (12) (indeed, only the constraints related to
k ∈ M are really active, and fork ∈ M , (7) is equivalent
to αc⋆kI(θc⋆k,

µ⋆

rk
) ≥ 1).

Constraint (10).Note that ifk⋆c < k0, thenBck⋆
c
(θ) = ∅.
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Assume thatk⋆c ≥ k0. Whenλ ∈ Bck⋆
c
(θ), the optimal

(channel, rate) pair underλ is (c, k⋆c ). This implies that
rk⋆

c
λck⋆

c
≥ µ⋆, and so:

∑

(c′,l)6=(c⋆,k⋆)

αc′lI
(c′,l)(θ, λ) ≥ αck⋆

c
I(θck⋆

c
,
µ⋆

rk⋆
c

).

Now selectλǫ as follows:λc′k = θc′k for all (c′, k) 6=
(c, k⋆c ), andλck⋆

c
= µ⋆/rk⋆

c
+ ǫ. Thenλǫ ∈ Bck⋆

c
(θ) for

all ǫ > 0, and

lim
ǫ→0

∑

(c′,l)6=(c⋆,k⋆)

αc′lI
(c′,l)(θ, λ) = αck⋆

c
I(θck⋆

c
,
µ⋆

rk⋆
c

).

We conclude that (10) is equivalent to:

∀c 6= c⋆, αck⋆
c
I(θck⋆

c
,
µ⋆

rk⋆
c

) ≥ 1k⋆
c
≥k0

.

Constraint (11).For k < k0, Bck(θ) = ∅. Assume that
k ≥ k0 andk 6= k⋆c . Then

∑

(c′,l)6=(c⋆,k⋆) αc′lI
(c′,l)(θ, λ)

is minimized over Bck(θ) when for all c′ 6= c
and all k, λc′k = θc′k, and is actually equal to:
infλc∈Ck

∑

l αclI(θcl, λcl). Unfortunately, the above op-
timization problem cannot be further reduced. �

PROOF OFTHEOREM 3

For λ: ∀c, θc ∈ T ∩ U andα ∈ R
C×K
+ , we define:

D(θ, λ, α) =
∑

(c,k)

αckI(θck, λck).

As defined previously, the “bad parameter set” is:

B(θ) = {λ ∈ T ∩U : λc⋆k⋆ = θc⋆k⋆ , max
(c,k)

rkλck > µ⋆}.

Further define the set:

C = {α ∈ R
C×K
+ : inf

λ∈B(θ)
D(θ, λ, α) ≥ 1}.

cU (θ) in Theorem 2 is the solution to a minimization
problem overC . An upper bound ofcU (θ) is obtained
by choosingα ∈ C and by computing the value of the
objective function atα which is

∑

c,k αck(µ
⋆−µck). We

prove that if we defineα as:
• αc⋆k = 1/I(θc⋆k,

µ⋆

rk
) if k ∈ M ,

• αck⋆
c
= (min{I(θck⋆

c
, µ⋆

rk⋆
c

), I(θck⋆
c
, θck⋆

c
− δc

rk⋆
c

)})−1

if c 6= c⋆,
• αck = 1/I(θck, θck +

δc
rk
) if c 6= c⋆ andk ∈ Mc,

• αck = 0 if c 6= c⋆ andk /∈ Mc ∪ {k⋆c}.
thenα ∈ C. To do so, we use the following decomposi-
tion: B(θ) = ∪(c,k)6=(c⋆,k⋆)Bck(θ) where

Bck(θ) = {λ ∈ B(θ) : (c, k) ∈ arg max
(c′,k′)

rk′λc′k′}.

(i) If λ ∈ ∪k 6=k⋆Bc⋆k(θ). Sinceλ ∈ ∪k 6=k⋆Bc⋆k(θ), we

haveθc⋆k⋆ = λc⋆k⋆. Sincek 7→ rkλc⋆k is unimodal, and
k⋆ /∈ argmaxk rkλc⋆k, then there must exist a neighbour
k′ of k⋆ such thatrk′λc⋆k′ ≥ rk⋆λc⋆k⋆ = rk⋆θc⋆k⋆ = µ∗.
Henceλc⋆k′ ≥ µ∗/rk′ . Using the monotonicity of the
KL divergence:

D(θ, λ, α) ≥ αc⋆k′I(θc⋆k′ , λc⋆k′)

≥ αc⋆k′I(θc⋆k′ , µ∗/rk′)

≥ 1.

(ii) If λ ∈ ∪kBck(θ) , c 6= c⋆. Under parameterλ, let

k̃ = argmaxk rkλck be the optimal rate for channelc.
We further consider two cases depending on whetherk̃
is equal tok⋆c .
Case (a):k̃ = k⋆c . Then λ ∈ Bck⋆

c
(θ), and we have

rk⋆
c
λck⋆

c
≥ µ⋆. Hence:

D(θ, λ, α) ≥ αck⋆
c
I(θck⋆

c
, λck⋆

c
)

≥ αck⋆
c
I(θck⋆

c
, µ⋆/rk⋆

c
)

≥ 1.

Case (b):k̃ 6= k⋆c . Sincek 7→ rkλck is unimodal and
k⋆c 6= argmaxk rkλck, there must exist a neigbourk′

of k⋆c such thatrk′λck′ ≥ rk⋆
c
λck⋆

c
. Sincek 7→ rkθck is

unimodal andk⋆c = argmaxk rkθck, we haverk⋆
c
θck⋆

c
≥

rk′θck′. Therefore:

max(rk⋆
c
|λck⋆

c
− θck⋆

c
|, rk′ |λck′ − θck′|)

≥ (rk⋆
c
θck⋆

c
− rk′θck′)/2 ≥ δc.

To establish the above inequality, we have used the fact
that for all a, b > 0 and for all x ∈ R, max(|x|, |x +
a + b|) ≥ (a + b)/2, and have applied this result for
x = rk⋆

c
(λck⋆

c
− θck⋆

c
), a = rk′λck′ − rk⋆

c
λck⋆

c
, and b =

rk⋆
c
θck⋆

c
− rk′θck′. We have shown that:

either (b1)rk⋆
c
|λck⋆

c
− θck⋆

c
| ≥ δc;

or (b2) rk′ |λck′ − θck′| ≥ δc.

If (b1) holds, then eitherλck⋆
c
≤ θck⋆

c
− δc/rk⋆

c
or λck⋆

c
≥

θck⋆
c
+ δc/rk⋆

c
. In the latter case, we have:

λck′ ≥
rk⋆

c

rk′

λck⋆
c
≥

rk⋆
c

rk′

θck⋆
c
+

δc
rk′

≥ θck′ +
δc
rk′

.

If (b2) holds, then eitherλck′ ≥ θck′ + δc/rk′ , or λck′ ≤
θck′ − δc/rk′ . In the latter case, we have:

λck⋆
c
≤

rk′

rk⋆
c

λck′ ≤
rk′

rk⋆
c

θck′ −
δc
rk⋆

c

≤ θck⋆
c
−

δc
rk⋆

c

.

In both cases (b1) and (b2), we have proved that either
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λck⋆
c
≤ θck⋆

c
− δc/rk⋆

c
or λck′ ≥ θck′ + δc/rk′ . Finally:

D(θ, λ, α) ≥ αck⋆
c
I(θck⋆

c
, λck⋆

c
) + αck′I(θck′ , λck′)

≥ max{αck⋆
c
I(θck⋆

c
, θck⋆

c
−

δc
rk⋆

c

),

αck′I(θck′ , θck′ +
δc
rk′

)}

≥ 1.

We have proved thatinfλ∈B(θ) D(θ, λ, α) ≥ 1, and
thus α ∈ C. Now for our choice ofα, the value of
the objective function of the optimization problem in
Theorem 2 isc′u(θ). We conclude thatcU (θ) ≤ c′U (θ).
�

PROOF OFTHEOREM 6

We first decompose the regret as the sum of the regret
due to exploring the neighbourhood of the optimal rate
on each channel, and the other (channel,rate) pairs. By
definition of the regret:

Rπ(T ) =
∑

(c,k)

(µ⋆ − µck)E[tck(T )]

=
∑

c

∑

|k−k⋆
c
|≤1

(µ⋆ − µck)E[tck(T )]

+
∑

c

∑

|k−k⋆
c
|>1

(µ⋆ − µck)E[tck(T )].

Therefore, to prove the theorem, it is sufficient to prove
that for all channelsc and all ǫ > 0:

E[tck(T )] ≤ (1 + ǫ) log(T )τ−1
c +O(log(log(T )) + ∆−2),

if |k − k⋆c | ≤ 1 and:

E[tck(T )] ≤ O(log(log(T )) + ∆−2).

otherwise. To ease notation we definef(n) = log(n) +
3 log(log(n)), and the empirical success probability of
(channel,rate) pair(c, k) as θ̂ck(n) = µ̂ck(n)/µck.

DefineA the set of instants where there exists at least
a (channel, rate) pair(c, k) such that either its index (i.e
its upper confidence bound)qck(n) under-estimates its
expected valueµck, or its lower-confidence boundq

ck
(n)

over-estimates its expected valueµck:

A1 = ∪(c′,k′){1 ≤ n ≤ T : qc′k′(n) < µc′k′},

A2 = ∪(c′,k′){1 ≤ n ≤ T : q
c′k′

(n) > µc′k′},

A = A1 ∪A2.

Consider(c, k) and ǫ > 0 both fixed and definẽtck =
(1 + ǫ)f(T )τ−1

c if |k − k⋆c | ≤ 1 and t̃ck = 0 otherwise.

Further define the sets of instants:

Bck = {1 ≤ n ≤ T : (c, k)(n) = (c, k), tck(n) < t̃ck}

Cck = {1 ≤ n ≤ T : n /∈ A, (c, k)(n) = (c, k),

lc(n) 6= k⋆c}

Dck = {1 ≤ n ≤ T : n /∈ A, (c, k)(n) = (c, k),

lc(n) = k⋆c , tck(n) ≥ t̃ck}.

and we have that:

E[tck(T )] ≤ E[|A|] + E[|Bck|] + E[|Cck|] + E[|Dck|].

At all instantsn ∈ Bck, tck(n) is incremented, therefore
|Bck| ≤ t̃ck. From the above inequality we deduce:

E[tck(T )] ≤ E[|A|] + t̃ck + E[|Cck|] + E[|Dck|].

To prove the announced result, it is sufficient to show
that the expected size ofA, Bck andDck are at most of
orderO(∆−2 + log(log(T ))).

We will prove the following upper bounds:

(i) E[|A|] = O(log(log(T )))
(ii) E[|Cck|] = O(∆−2)

(iii) E[|Dck|] = O(1).

(i) E[|A|] = O(log(log(T )))

To upper bound the expected size ofA, let us prove
that:

A ⊂ ∪(c,k){1 ≤ n ≤ T : tck(n)I(θ̂ck(n), θck) ≥ f(n)}.
(14)

We recall the definition of indexqck(n):

qck(n) = sup{q ∈ [0, rk], tck(n)I(θ̂ck(n), q/rk) ≤ f(n)}.

Sinceq 7→ I(p, q) is increasing forq ≥ p, if qck(n) <
µck then:

tck(n)I(θ̂ck(n), µck/rk) = tck(n)I(θ̂ck(n), θck) ≥ f(n).

Using the same reasoning for the lower confidence bound
q
ck
(n):

q
ck
(n) = inf{q ∈ [0, rk], tck(n)I(θ̂ck(n), q/rk) ≤ f(n)},

and sinceq 7→ I(p, q) is decreasing forq ≤ p, if
q
ck
(n) > µck then tck(n)I(θ̂ck(n), θck) ≥ f(n), so that

equation (14) is valid.

Applying [21][Theorem 10] we have that:

P[tck(n)I(θ̂ck(n), θck) ≥ f(n)] ≤ e
⌈log(n)f(n)⌉

n(log(n))3
.

Using a union bound we obtain the announced in-
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equality:

E[|A|] ≤
T
∑

n=1

∑

(c,k)

P[tck(n)I(θ̂ck(n), θck) ≥ f(n)]

≤ CKe

T
∑

n=1

⌈log(n)f(n)⌉

n(log(n))3

≤ O(log(log(T ))).

(ii) E[|Cck|] = O(∆−2)

Let us decomposeCck depending on the index of the
leader:

Cck = ∪k′:|k−k′|≤1,k′ 6=k⋆
c
Cckk′,

Cckk′ = {1 ≤ n ≤ T : n /∈ A, (c, k)(n) = (c, k),

lc(n) = k′},

the set of instantsn /∈ A where(c, k) is selected andk′

is the leader on channelc.
Fix k′ 6= k⋆c and considern ∈ Cckk′. There exists

k̃ such that|k̃ − k′| = 1 and µ
ck̃

≥ µck′ + ∆ since
k′ 6= k⋆c andk 7→ µck is unimodal for allc. Let us prove
that we must haveUc(n) = 0. Assume thatUc(n) =
1 so thatq

ck′
(n) ≥ maxk′′:|k′′−k′|=1 qck′′(n) ≥ q

ck̃
(n).

Sincen /∈ A we have:q
ck̃
(n) ≥ µ

k̃
> µk′ ≥ q

ck′
(n), a

contradiction.
Define s =

∑n
n′=1 1{n

′ ∈ Cckk′} the number of
instants inCckk′ between1 and n. Since for alln ∈
Cckk′ we haveUc(n) = 0, we must have(c, k)(n) ∈
argmink′′:|k′′−k′|≤1 tck′′(n) so thattck′′(n) ≥ s/3 for all
k′′ such that|k′′ − k′| ≤ 1. Sinceµk̃ ≥ µk′ + ∆ and
µ̂k′(n) ≥ µ̂

k̃
(n) , we must have either|µ̂k′(n)− µk′ | ≥

∆/2 or |µ̂
k̃
(n)− µ

k̃
| ≥ ∆/2.

Sotck′′(n) ≥ s/3 for all k′′ such that|k′−k′′| ≤ 1 and
maxk′′:|k′−k′′|≤1 |µ̂k′′(n)−µk′′(n)| ≥ ∆/2, and applying
Lemma 1, we obtain thatE[|C|] = O(∆−2).

(iii) E[|Dck|] = O(1)

First it is noted that if|k − k⋆c | > 1, thenDck = ∅,
sincen ∈ D implieslc(n) = k⋆c and by design of CRS-T:
|k(n)− k⋆c | = |k(n)− lc(n)(n)| ≤ 1.

Now considerk such that|k−k⋆c | ≤ 1 and decompose
Dck depending on the value of the testUc(n) ∈ {0, 1}:

Dck = D0
ck ∪D1

ck,

D0
ck = {1 ≤ n ≤ T : n ∈ Dck, Uc(n) = 0},

D1
ck = {1 ≤ n ≤ T : n ∈ Dck, Uc(n) = 1}.

Considern ∈ D1
ck. Sincelc(n) = k⋆c andUc(n) = 1, by

design of CRS-T we haveUc′(n) = 1 for all channels
c′ otherwisec is not selected. By the same reasoning
as above, sincen /∈ A, Uc′(n) = 1 for all c′ implies
lc′(n) = k⋆c′ for all c′. Also, by design of CRS-Tk = k⋆c

otherwise(c, k) is not selected. Since(c, k) is selected
qck⋆

c
(n) ≥ qc⋆lc⋆ (n)(n) = qc⋆k⋆(n) ≥ µ⋆ sincen /∈ A. By

definition of the indexq, qck⋆
c
(n) ≥ µ⋆ implies:

tk(n)I(θ̂ck(n), µ
⋆/rk) ≤ f(n) ≤ f(T )

sinceq 7→ I(p, q) is increasing forq ≥ p andn 7→ f(n)
is increasing. By definition ofτc we have:

tk(n) ≥ t̃ck

= (1 + ǫ)f(T )τ−1
c

≥ (1 + ǫ)f(T )/I(µck, µ
⋆/rk),

so that:

I(θ̂ck(n), µ
⋆/rk) ≤ I(θck, µ

⋆/rk)/(1 + ǫ).

Therefore, sincep 7→ I(p, q) is decreasing forp ≤ q
there existsη > 0 (depending onǫ) such that:

|θ̂ck(n)− θck| ≥ η.

Therefore:

D1
ck ⊂ {(c, k)(n) = (c, k), |θ̂ck(n)− θck| ≥ η}

so thatE[D1
ck] = O(η−2) applying Lemma 1 once

again.

We turn toD0
ck. SinceUc(n) = 0, we haveq

ck⋆
c

(n) ≤

maxk′:|k′−k⋆
c
|=1 qck′(n) so that either (a)q

ck⋆
c

(n) ≤ µ̃c

or (b) maxk′:|k′−k⋆
c
|=1 qck′(n) ≥ µ̃c.

Case (a): if q
ck⋆

c

(n) ≤ µ̃c we have:

tck⋆
c
(n)I(θ̂ck⋆

c
(n), µ̃c/rk⋆

c
) ≤ f(n) ≤ f(T ),

and sincetck⋆
c
(n) ≥ (1 + ǫ)f(T )/I(θck⋆

c
, µ̃c/rk⋆

c
):

I(θ̂ck⋆
c
(n), µ̃c/rk⋆

c
) ≤ I(θck⋆

c
, µ̃c/rk⋆

c
)/(1 + ǫ). (15)

Case (b): considerk′ such that|k′−k⋆c | = 1, if qck′(n) ≥
µ̃c, then:

tck′(n)I(θ̂ck′(n), µ̃c/rk′) ≤ f(n) ≤ f(T ),

and sincetck′(n) ≥ (1 + ǫ)f(T )/I(θck′ , µ̃c/rk′):

I(θ̂ck′(n), µ̃c/rk′) ≤ I(θck′(n), µ̃c/rk′)/(1 + ǫ). (16)

Putting (15) and (16) together, we deduce that there must
exist η such that:

sup
k′:|k′−k⋆

c
|≤1

|θ̂ck′(n)− θck′| ≥ η,

and therefore:

D0
ck ⊂ {(c, k)(n) = arg min

k′:|k′−k⋆
c
|≤1

tck′(n),

sup
k′:|k′−k⋆

c
|≤1

|θ̂ck′(n)− θck′| ≥ η},
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and using Lemma 1 a third time we have thatE[|D0
ck|] =

O(η−2) which concludes the proof. �

A DEVIATION RESULT

The following result proven in [28][Lemma 2.2] is
reproduced here for completeness.

Lemma 1 ([28]): Let ǫ > 0. Consider(X(t))t≥0 i.i.d.
random variables in[0, 1] with common expectationµ.
Define Fn the σ-algebra generated by(X(t))1≤t≤n.
Consider a random variableBt ∈ {0, 1} such thatBt

is Ft−1 measurable for allt ≥ 0, and definet(n) =
∑n

t=1 Bt and µ̂(n) = (1/t(n))
∑n

t=1 BtXt. Let Λ ⊂ N

be a (random) set of instants. Assume that there exists
a sequence of (random) sets(Λ(s))s≥1 such that (i)
Λ ⊂ ∪s≥1Λ(s), (ii) for all s ≥ 1 and all n ∈ Λ(s),
t(n) ≥ ǫs, (iii) |Λ(s)| ≤ 1, and (iv) the eventn ∈ Λ(s)
is Fn-measurable. Then for allδ > 0:

E[
∑

n≥1

1{n ∈ Λ, |µ̂(n)− µ| > δ}] ≤
1

ǫδ2
.
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