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Abstract: This paper deals with the extension to sampled-data stabilization of strict feedback dynamics
of the Immersion and Invariance procedure proposed in Astolfi and Ortega [2003]. A direct digital
approach is developed in two steps: first the target dynamics and immersion mapping are defined for the
equivalent discrete-time model; then the control law is built to drive the dynamics towards the invariant
manifold. A simulated example illustrates the performances.
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1. INTRODUCTION

Stabilization of continuous-time strict-feedback dynamics has
been widely investigated in the last decades and several solu-
tions have been proposed. Among them, backstepping is the
most popular. It was firstly introduced in continuous time in
Kokotović and Arcak [2001] and later on extended to the
sampled-data context (Nešić and Teel [2006], Postoyan et al.
[2009], Monaco et al. [2011]). Immersion and Invariance (I&I)
proposed by Astolfi and Ortega [2003] represents an interesting
design procedure as shown in Astolfi et al. [2008]; applications
to different engineering domains have been also developed in
(Mannarino and Mantegazza [2014], Hristea and Siguerdidjane
[2011]). A first contribution in discrete time has been more
recently proposed in Yalcin and Astolfi [2011].

I&I technique relies on the idea of defining a manifold where a
lower dimensional dynamics is known to be stable and setting
a control law making it attractive and invariant. In this way, the
problem reduces to drive the dynamics to the invariant manifold
with boundedness of the complete state trajectory.

In this paper, I&I is addressed in the sampled-data (SD) context
starting from a continuous-time dynamics in strict feedback
form

ẋ1 = f (x1)+g(x1)x2

ẋ2 = a(x1,x2)+b(x1,x2)u
(1)

which admits a backstepping stabilizer ensuring global asymp-
totic stability (GAS) of the equilibrium. A first result is pro-
posed in Mattei et al. [2015] where a SD controller is de-
signed to ensure partial input-to-state matching of the continu-
ous off the manifold component. This assures attractivity under
sampled-data control but not invariance, which holds in that
case, because the external control is assumed equal to zero on
the manifold.
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In the present work, a general solution is proposed for strict
feedback dynamics. The design, worked out on the equiva-
lent sampled-data model, provides a ”direct digital” controller
which is developed in two steps. First, it is shown that a target
dynamics can be defined in the sampled-data domain while
ensuring the invariance of the consequent manifold. Then, it
is shown how to design a SD controller preserving manifold
invariance and attractivity with trajectory boundedness. The
computation of approximate solutions is also addressed. Com-
putational issues for sampled-data design are in Monaco and
Normand-Cyrot [2007].

The paper is organized as follows: in Section 2 some brief
recalls on continuous-time backstepping and I&I design are
provided. Section 3 deals with sampled-data I&I stabilization.
An example is worked out in Section 4 with simulations illus-
trating the performances.

2. PRELIMINARIES

2.1 Some recalls

In the sequel, some recalls on continuous-time backstepping
Khalil [1996] and I&I design Astolfi and Ortega [2003] are
made for dynamics (1). The vector fields f ,g : Rn → Rn are
assumed complete and without loss of generality the origin is
an equilibrium.
Theorem 2.1. (Khalil [1996]) Consider (1). If there exist a
smooth function γ(x1) with γ(0) = 0 and a positive-definite W :
Rn→ R such that

∂W
∂x1

( f (x1)+g(x1)γ(x1))< 0 ∀x1 ∈ Rn/{0}

then the state feedback control law

u = b−1(x1,x2)[γ̇(x1)−
∂W
∂x1

g(x1)−a(x1,x2)−K(x2− γ(x1))]

globally asymptotically stabilizes the origin with K > 0. //

Set, for simplicity
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f̄ (x) =
(

f (x1)+ x2g(x1)
a(x1,x2)

)
; ḡ(x) =

(
0

b(x1,x2)

)
.

Theorem 2.1 can be reformulated in the I&I framework by
setting ξ ∈ Rn and

x = π(ξ ) =

(
ξ

γ(ξ )

)
; c(ξ ) = b−1(ξ )[γ̇(ξ )−a(ξ ,γ(ξ ))];

z = φ(x1,x2) = x2− γ(x1).
(2)

Following Astolfi and Ortega [2003], the Corollary below sets
the problem in the I&I context.
Corollary 2.1. Consider the system in (1) under the hypotheses
of Theorem 2.1. Then, it is I&I stabilizable with target dynam-
ics ξ̇ = f (ξ )+g(ξ )γ(ξ ) by means of the feedback

ψ(x,z) = b−1(x1,x2)[γ̇(x1)−a(x1,x2)−K(x1,x2)z] (3)
with K(x1,x2)≥ K > 0; i.e. there exist smooth functions

α : Rn→ Rn, π : Rn→ Rn+1, c : Rn→ R
φ : Rn+1→ R, ψ : R(n+1)×1×R→ R

such that the following hold

H1 (Target Dynamics) the system

ξ̇ = f (ξ )+g(ξ )γ(ξ ) = α(ξ ) (4)
with ξ ∈Rn has a globally asymptotically stable equilibrium
at ξe and xe = π(ξe).

H2 (Immersion Condition) For all ξ ∈Rn, ∃ π(ξ )= (ξ γ(ξ ))
T

and c(ξ ) such that

f̄ (π(ξ ))+ ḡ(π(ξ ))c(ξ ) =
∂π

∂ξ
[ f (ξ )+g(ξ )γ(ξ ) (5)

H3 (Implicit manifold) The following identity holds
{x ∈ Rn|φ(x) = 0}= {x ∈ Rn|x = π(ξ ) f or some ξ ∈ Rn}
with φ(x) = x2− γ(x1) and z0 = φ(x0).

H4 (Manifold attractivity and trajectory boundedness) All tra-
jectories of the system

ż =
∂φ

∂x
[ f̄ (x)+ ḡ(x)ψ(x,z)]

ẋ = f̄ (x)+ ḡ(x)ψ(x,z)
(6)

are bounded with
lim
t→∞

z(t) = 0, ψ(π(ξ ),0) = c(ξ ). (7)

/

Proof. The target dynamics is given in (4); accordingly, H2 and
H3 are satisfied by the choice in (2) with z, the off-the-manifold
variable. The feedback

ψ(x,z) = b−1(x1,x2)[γ̇(x1)−a(x1,x2)−K(x1,x2)z]
with K(x1,x2)≥ k > 0 brings to the closed-loop dynamics

ẋ1 = f (x1)+g(x1)x2

ẋ2 = γ̇(x1)−K(x1,x2)z
ż =−K(x1,x2)z

with z converging to zero as the time increases. To prove bound-
edness of the trajectories, it is sufficient to show boundedness of
x1 and z. Hence, set any M > 0 such that W , as defined in (2.1),
verifies (L f + γLg)W (x1) < 0, ∀‖x1‖ > M. Consider now the
Lyapunov function V (x1,z) = W (x1) +

1
2 z2 and its derivative

along the trajectories of the system. Hence, for any smooth
function ρ(x1)> 0, one has

V̇ (x1,z)≤ (L f + γLg)W +
‖LgW‖2

ρ(x1)
+ρ(x1)z2− K̃(x1,z)z2

(8)
with K̃(x1,z) = K(x1,z+ γ(x1)). Finally, (8) is made negative
by defining a and K̃ such that

(L f + γLg)W +
‖LgW‖2

ρ(x1)
< 0 ∀‖x1‖> M

K̃(x1,z)> ρ(x1).
(9)

Hence the thesis. /

2.2 Problem settlement and the class of system under study

It is assumed in the sequel that the control input u is piecewise
constant over intervals of fixed length δ , the sampling period.
One looks for a controller u, possibly δ -dependent, that makes
the equilibrium of the closed-loop system globally asymptot-
ically stable at the sampling instants. With this in mind, the
following definition is set.
Definition 2.1. A system described by equation

ẋ = f (x)+g(x)u
is said to be sampled-data I&I stabilizable if there exist T > 0
and for each δ ∈]0,T ∗[, a piecewise constant control u constant
over time intervals of length δ ; i.e. u(t) = uk for t ∈ [kδ ,(k+
1)δ [ such that the equivalent sampled-data dynamics satisfy
H1d,H2d, H3d and H4d provided in the sequel.

Hereafter, for simplicity of notations, we consider the simplest
strict-feedback form

ẋ1 = f (x1)+g(x1)x2

ẋ2 = u
(10)

under the assumption of Theorem 2.1.

Indeed, the theory developed in the sequel can be extended to
any system in the general form (1) by first carrying out the
design for the integrator dynamics ẋ2 = vk and then finding uk
such that

uk = (
∫ (k+1)δ

kδ

b(x(τ))dτ)−1
∫ (k+1)δ

kδ

[vk−a(x(τ))]dτ

providing an implicit definition of uk.

Under sampling, dynamics (10) takes the form Monaco and
Normand-Cyrot [2007]

x1k+1 = Fδ
1 (x1k,x2k)+

δ 2

2!
ukGδ (x1k,x2k,uk)

x2k+1 = x2k +δuk

(11)

with

Fδ
1 (x1k,x2k) = eδ ( f+x2kg)x1

∣∣
x1=x1k

Gδ (x1k,x2k,uk) = g(x1k)

+
δ

3
(2L f Lg +LgL f +3x2kL2

g)x1
∣∣
x1=x1k

+O(δ 2).

The strict-feedback structure is lost under sampling since the
dynamics of x1 is directly influenced by the control which acts
with terms in O(δ 2) at least.

3. SAMPLED-DATA I&I STABILIZATION

In this section, the design of the I&I controller is directly
performed on the SD dynamics (11): namely, according to the
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sampled-data nature of the closed-loop system, the conditions
H1, H2, H3 and H4 of Corollary 2.1 will be reformulated and
shown to hold.

3.1 On the choice of the digital target dynamics

Given (10) and its equivalent sampled-data dynamics in (11),
let us define the SD immersion mapping πδ : Rn→ Rn+1 as

x = π
δ (ξ ) =

(
ξ
′

γ
δ (ξ )′

)′ (12)

with ξ ∈ Rn and the SD target dynamics as

ξk+1 = Fδ
1 (ξk,γ

δ (ξk))+
δ 2

2!
cδ (ξk)Gδ (ξk,γ

δ (ξk),cδ (ξk))

(13)
where γδ (ξ ) and cδ (ξ ) must be computed to satisfy

W (ξk+1) =W (ξk)+
∫ (k+1)δ

kδ

L( f+gγ)W (ξ (τ))dτ (14)

γ
δ (ξk+1) = γ

δ (ξk)+δcδ (ξk). (15)
The equality (14) ensures Lyapunov Matching of W (·) under
γδ (·) while (15) satisfies the immersion and invariance condi-
tion (sampled-data version of the H2). Accordingly, a different
invariant manifold is now obtained by setting

zδ = φ
δ (x) = x2− γ

δ (x1).

It is important to point out that cδ (·) is implicitly defined in
terms of γδ (·) in (15). Its computation can be nevertheless
worked out by substituting γδ (ξk+1) into (15) with its Taylor
expansion in a neighbourhood of ξk

γ
δ (ξk+1) = γ

δ (ξk)+∑
i≥1

1
i!

∂ iγδ

∂ξ i

∣∣
ξk
(ξk+1−ξk)

i (16)

with ξk+1 defined as in (13). Setting now the following structure
for cδ (·) and γδ (·) (Monaco and Normand-Cyrot [2007])

cδ (ξ ) = c0(ξ )+∑
i≥1

δ i

(i+1)!
ci(ξ ) (17)

γ
δ (ξ ) = γ0(ξ )+∑

i≥1

δ i

(i+1)!
γi(ξ ) (18)

easy but even tedious computations enable us to show that the
first terms are solutions of the following equalities
c0(ξk) = (L f + γ0Lg)γ0

∣∣
ξk

c1(ξk) = [γ1Lgγ0 + c0Lgγ0 +(L f + γ0Lg)γ1 +(L f + γ0Lg)
2
γ0]ξk

· · · .
Substituting now cδ (·) with such expressions into (14), one re-
formulates (14) as an equality in γδ (·) which can be iteratively
solved so getting for the first terms

γ0(ξk) = γ(ξ )
∣∣
ξk

γ1(ξk) = 0

γ2(ξk) = [γ̈(ξ )− 1
2

c1(ξ )]ξk

· · · .
and thus according to (17)

c0(ξk) = γ̇(ξ )
∣∣
ξk

c1(ξk) = [c0Lgγ0 + γ̈]ξk
.

The following result can now be stated.

Proposition 3.1. Consider (10) under the hypotheses of Theo-
rem 2.1 with LgW 6= 0. Then, there exist T ∗ > 0 and, for each
δ ∈]0,T ∗[, smooth functions

α
δ : Rn→ Rn; π

δ : Rn→ Rn+1

cδ : Rn→ R; φ
δ : R→ R

such that the following conditions hold true:

H1d (Target Dynamics) The equation (13) rewritten as

ξk+1 = α
δ (ξ )

with ξ ∈Rn has a globally asymptotically stable equilibrium
at ξe and πδ (ξe) = xe;

H2d (Immersion Condition) For all ξ ∈ Rn, define πδ (ξ ) =(
π

δ
1 (ξ ) π

δ
2 (ξ )

)T
and cδ (ξ ) such that

π
δ
1 ◦α

δ (ξ ) = Fδ
1 (πδ

1 (ξ ),π
δ
2 (ξ ))+

δ 2

2!
cδ (ξ )Gδ (πδ

1 (ξ ),π
δ
1 (ξ ),c

δ (ξ ))

π
δ
2 ◦α

δ (ξ ) = π
δ
2 (ξ )+δcδ (ξ );

H3d (Implicit manifold) The following identity holds

{x∈Rn|φ δ (x) = 0}= {x∈Rn|x = π
δ (ξ ) f or some ξ ∈Rn}

with φ δ (x) = x2− γδ (x1) and z0 = φ δ (x0).

/

Proof. First, one rewrites (14) as a formal series equality

δQ(ξ ,δ ,γδ ) =W (ξk+1)−W (ξk)− eδ (L f +γLg)W
∣∣
ξk
= 0

with ξk+1 as in (13) and one looks for γδ (·) satisfying

Q(ξ ,δ ,γδ (ξ )) = 0 ∀ξ ∈ Rn (19)

in which, by definition, Q(ξ ,δ , )̇ := Q0(ξ , .)+∑i≥1 δ iQi(ξ , .).

It is immediately verified that γ0(ξ ) = γ(ξ ) satisfies (19) for
δ = 0; i.e.

Q0(ξ ,γ0) = (L f + γ0Lg)W
∣∣
ξ
− (L f + γLg)W

∣∣
ξ
= 0.

Furthermore, provided the rank condition

∂Q(ξ ,δ ,γδ )

∂γδ

∣∣
δ=0,γδ=γ0

= LgW (ξ ) 6= 0 (20)

holds, one concludes from the Implicit Function Theorem, the
existence of a T ∗ small enough such that for any δ ∈]0,T ∗[,
(19) admits a solution in the form of asymptotic expansion
(18) around γ(ξ ). GAS of the equilibrium of the digital target
dynamics follows from the property of the continuous-time
dynamics: i.e., by construction of αδ , the Lyapunov matching
condition with respect to W holds

W (ξk+1)−W (ξk) =
∫ (k+1)δ

kδ

(L f + γLg)W (ξ (τ))dτ < 0

provided that (L f + γLg)W (ξ ) < 0. As far as invariance is
concerned, one easily shows by comparing the terms of the
same power in δ in the expansion of the respective sides of the
equality (15) to be satisfied, the existence of cδ (·) in the form
of (17) such that (15) holds. We note that cδ (·) appears in the
construction of γδ (·) and vice versa. Nevertheless, no algebraic
loop is introduced in the computation because each term γi
depends on the previous terms γ j and c j for 0 ≤ j ≤ i−1) and
each c j depends itself on γp for p≤ j. /

Remark Proposition 3.1 states the existence of a digital target
dynamics, defined according to cδ (·) and γδ (·), which results,
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in general, to be different from the continuous-time one as well
as the immersion mapping πδ . Indeed, as could be expected,
in the sampled-data context the whole design procedure is
parametrized by δ ; so that by changing the sampling period
the manifold and the mappings take different forms. Such
a re-shaping takes into account the possible mismatch with
respect to the continuous manifold occurring under sampled-
data control. /

3.2 On the digital controller

In the previous section the SD dynamics was found and the
global asymptotic stability of its equilibrium proved by means
of a γδ which was computed by solving the one-step input
Lyapunov matching problem (ILM-P) with respect to W (as in
(14)).

At this point one has that the immersion is defined as in (12)
and that the complete dynamics is defined by

x1k+1 = F̄δ
1 (x1k)+ zkPδ (x1k,zk)+

δ 2

2!
ψ

δ (x1k,zk)Ḡδ (x1k,zk,ψ
δ (x1k,zk))

x2k+1 = x2k +δψ
δ (x1k,x2k,zk)

zk+1 = zk +δψ
δ (x1k,x2k,zk)− γ

δ (x1k+1)+ γ
δ (x1k)

(21)

with
zk = φ

δ (x1k,x2k) = x2k− γ
δ (x1k)

F̄δ
1 (x1k) = Fδ

1 (x1k,γ
δ (x1k)

Pδ (x1k,zk) = ∑
i≥1

1
i!

∂ iFδ
1

∂x2
i

∣∣
γδ (x1k)

zi−1
k

Ḡδ (x1k,zk,ψ
δ ) = Gδ (x1k,zk + γ

δ (x1k),ψ
δ ).

In particular, the digital control law is computed by solving an
input-output problem on zk. Manifold attractivity and trajecto-
ries boundedness are proved by Theorem 2.1.
Theorem 3.1. Under the hypotheses of Proposition 3.1, there
exist T ∗ > 0 and for each δ ∈]0,T ∗[ a sampled-data feedback
ψδ : Rn+1→ R of the form

ψ
δ (x1,x2,z) = ψ0(x1,x2,z)+∑

i≥1

δ i

(i+1)!
ψi(x1,x2,z) (22)

which ensures digital I&I stabilization of the equilibrium of the
dynamics in (10); namely, one has

H4d (Manifold Invariance and trajectory boundedness) all tra-
jectories of the system

x1k+1 = F̄δ
1 (x1,x2)+ zkPδ (x1,x2,z)+

δ 2

2!
ψ

δ (x1,x2,z)Ḡδ (x1,x2,z,ψδ (x1,x2,z))

x2k+1 = x2 +δψ
δ (x1,x2,z)

zk+1 = z+δψ
δ (x1,x2,z)− γ

δ (x1k+1)+ γ
δ (x1)

are bounded and satisfy

lim
k→∞

zk = 0 ψ
δ (πδ (ξ ),0) = cδ (ξ ). (23)

/

Proof. As already stated in Proposition 3.1, H1d, H2d and
H3d hold, and the dynamics on the manifold defined by {x ∈
Rn+1 : x = πδ (ξ )} has a globally asymptotically stable equilib-
rium. It remains to show that it is possible to design a control

law uk = ψδ (xk,zk) such that the trajectories of the closed-
loop system are bounded and satisfy (23). To this end, con-
sider the continuous-time I&I controller, namely ψ(x,z). As in
Fossard and Normand-Cyrot [1996], one can get sampeld-data
matching of the evolution of the closed-loop continuous-time z-
dynamics when the feedback control law uc is applied to (10);
i.e.,

φ
δ (xk+1) = eδ (L f̄ +ucLḡ)φ

∣∣
t=kδ

. (24)
By rewriting (24) as a formal series

δS(xk,zk,δ ,ψ
δ ) = φ

δ (xk+1)− eδ (L f̄ +ucLḡ)φ
∣∣
t=kδ

, one concludes from the Implicit Function Theorem pointing
out that since

∂S(xk,zk,δ ,u)
∂u

∣∣
δ=0,u=ψ

= Lḡφ = 1 6= 0 (25)

a solution in the form (22) exists for δ ∈]0,T ∗[ in a neighbor-
hood of the continuous-time solution.

It results that input-partial state matching is satisfied in the ab-
sence of finite escape time, which is ensured by the hypothesis
of Theorem 2.1. As a direct consequence one obtains that zk
converges to zero as k increases with boundedness of the whole
state trajectories and ψδ (πδ (ξk),0) = cδ (ξk). /

Each term of the digital controller can be derived by equating
the terms in (24) with the same power of δ . In this way one gets
that each term is computed by solving a linear equation in the
previous components ψ j. For the first terms, one has

ψ0(xk,zk) =ψ(x,z)
∣∣
xk,zk

, ψ1(xk,zk) = ψ̇(x,z)
∣∣
xk,zk

+
1
3

γ2(xk)

ψ2(xk) =ψ̈(x,z)
∣∣
xk,zk

+
1
4

γ3(xk)+ [(L f + x2Lg)γ2+

1
2
(ψ̇ + γ2)Lgγ0]xk,zk .

Remark Setting δ = 0, the sampled-data control law ψδ (·) and
immersion mapping πδ (·) (and, consequently, cδ (·) and γδ (·))
reduce to their continuous-time analogs. /

The so far introduced controller is characterized through its
asymptotic expansion, but only approximate solutions can be
computed. A (p,q)-th order approximate solution takes the form

ψ
δ ,[p,q](xk,zk) = ψ

[p]
0 +

q

∑
i=1

δ i

(i+1)!
ψ

[p]
i

where p is the order of approximation of γδ (·). One has to set δ

small enough so that the hypotheses in Theorem 3.1 hold even
when an approximated controller is applied.

4. AN ACADEMIC EXAMPLE

Consider the system
ẋ1 = x2

1 + x2 ẋ2 = u (26)

whose equilibrium xe = (0, 0)T has to be stabilized. It verifies
the hypotheses of Theorem 2.1: i.e. there exist W = 1

2 x2
1 and

γ(x1) =−x1− x2
1 such that (L f + γLg)W < 0 for x1 ∈ R−{0}.

Hence, one can set z = φ(x1) = x2 + x1 + x2
1.

4.1 Continuous-time design

In the continuous time case, the I&I control law which makes
the origin globally asymptotically stable is
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uc(x) =−K(x2 + x1 + x2
1)− (1+2x1)(x2

1 + x2) K > a > 1
with K = 2. The immersion mapping and invariant manifold are
defined as in Theorem 2.1. The target dynamics is ξ̇ =−ξ .

4.2 Digital design

First, introduce the sampled-data equivalent model associated
to (26) in O(δ 3), which is provided by

x1k+1 = x1k +δ (x2
1k + x2k)+δ

2x1k(x2
1k + x2k)+

δ 2

2!
uk +O(δ 3)

x2k+1 = x2k +δuk.

We use the second order approximated sampled-data equivalent
model since we shall compute the second order approximate
controller ψδ [p,q]. In this case, the target dynamics is defined as

ξk+1 = ξk +δ (ξ 2
k + γ0(ξk))+

δ 2

2!
γ1(ξk)+

δ 2

2!
[2ξk(ξ

2
k +

γ0(ξk))]+
δ 2

2!
c0(ξk)+O(δ 2)

where γ0, γ1, and c0 are the terms defining γδ ,[2] and cδ ,[1].
According to Theorem 3.1 they are computed as

γ0(ξk) =−ξk−ξ
2
k γ2(ξk) = 2ξ

3
k

c0(ξk) = (ξk +2ξ
2
k ) c1(ξk) =−2ξk−8ξ

2
k −4ξ

3
k .

The second-order approximated SD I&I control law is defined
according to Theorem 3.1

u0(xk) = −2(x2k + x1k + x2
1k)− (1+2x1k)(x2

1k + x2k)
u1(xk) = −2x4

1k +6x3
1k−4x2

1kx2k +11x2
1k+

6x1kx2k +6x1k−2x2
2k +7x2k +

1
3

γ2

u2(xk) = 18x4
1k−2x3

1k +36x2
1kx2k−27x2

1k
−2x1kx2k−14x1k +18x2

2k−15x2k +6x2
1k(x

2
1k + x2k)+

(
3
2

u2− u̇c)(−1−2x1k).

(27)
It is nasty but easy to verify that by setting x2k = γδ (x1k) in (27)
one gets exactly the expression of cδ (x1k).

4.3 Simulations

The designed controller is compared to the continuous-time one
and its discrete emulated version and the results are illustrated
in the sequel. The simulations are performed with different
sampling periods δ (0.1, 0.4 and 0.7 seconds) and initial
condition x = (0.5,0.5)T . First of all, it can be pointed out that
the attractive manifold defined by the sampled-data approach is
not the same as the continuous-time one (it is itself a function
of δ ); this appears evident from Figs for increasing values of
δ . The performances of the proposed controller are depicted
in Figs 1-2 and 3. It results that while no sensible differences
can be detected for small sampling periods, when δ increases
the proposed controller better fits the requirements and is still
capable to assure stability when the emulated controller fails
(δ = 0.7s).

Concerning the control law, similar results can be observed; the
amplitudes of the efforts are comparable for small sampling
periods; while significant improvements are obtained when it
increases. In particular, the effort under the approximate second
order II controller is lower even with respect to the continuous
solution; moreover it ensures smoother trajectories and faster
transient than the emulated controller.
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Fig. 1. Simulations with δ = 0.1 s and x0 = (0.5,0.5)T

5. CONCLUSIONS

Assuming the existence of a continuous controller asymptoti-
cally stabilizing a strict-feedback dynamics, a sampled-data I&I
control law has been proposed in the present work. The major
point stands in re-defining the immersion mapping and the at-
tractive manifold, which characterize the I&I design procedure,
according to the the sampled-equivalent model of the system.
As pointed out it enables to compensate the mismatch of the
state evolutions over the invariant manifold under sampled-
data controller, so improving the over all performances. Some
simple simulations confirm the interest of the proposed solu-
tion. Future works include the extension of this procedure to
more general strict-feedback structures and investigations on
the maximum allowed sampling period (MASP).
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