Uncertainty quantification and reduction for the monotonicity properties of expensive-to-evaluate computer models

Julien Bect, Nicolas Bousquet, Bertrand Iooss, Shijie Liu, Alice Mabille, Anne-Laure Popelin, Thibault Rivière, Rémi Stroh, Roman Sueur, Emmanuel Vazquez

To cite this version:
Julien Bect, Nicolas Bousquet, Bertrand Iooss, Shijie Liu, Alice Mabille, et al.. Uncertainty quantification and reduction for the monotonicity properties of expensive-to-evaluate computer models. Uncertainty in Computer Models 2014 Conference, Jul 2014, Sheffield, United Kingdom. hal-01103724

HAL Id: hal-01103724
https://hal-supelec.archives-ouvertes.fr/hal-01103724
Submitted on 16 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Uncertainty quantification and reduction for the monotonicity properties of expensive-to-evaluate computer models

Julien Bect1, Nicolas Boussquet1, Bertrand Iooss1, Shijie Liu1, Alice Mobile1, Anne-Laure Popelin1, Thibault Rivière1, Rémi Stroh1, Roman Sueur1, Emmanuel Vazquez1

1 SUPELEC, Gif-sur-Yvette, France 2 EDF R&D, Chatou, France

Abstract. We consider the problem of estimating monotonicity properties of a scalar-valued numerical model—e.g., a finite element model combined with some post-processing. Several quantitative monotonicity indicators are introduced. Since the evaluation of the numerical model is usually time-consuming, these indicators have to be estimated with a small budget of evaluations.

We adopt a Bayesian approach, where the numerical model itself is modeled as a Gaussian process. We estimate the monotonicity indicators, and quantify the uncertainty surrounding them, through conditional simulations of the Gaussian process partial derivatives. The approach is illustrated with a numerical model of a passive component in a power plant.

Future work will leverage this framework together with the Stepwise Uncertainty Reduction principle to create sequential design strategies, in order to get an improved knowledge of the monotonicity properties of the model.

Understanding the structure of numerical models

Consider a deterministic numerical model:

\[f(x) \]

with the following assumptions:

- \(x \in X \subseteq \mathbb{R}^d \)
- \(f(x) \in \mathbb{R} \) (scalar output),
- \(f \) is expensive to evaluate.

Computer experiments, when properly designed, are a useful tool to discover (or confirm) structural properties of such a numerical model:

- active/inactive variables (screening),
- additive responses, low-order interactions (S.A.),
- and, in this work: monotonicity properties

using a limited number of evaluations (runs of the code).

Partial monotonicity properties

We assume that:

- \(X \) is an hyper-rectangle: \(X = \prod_{j=1}^d [a_j, b_j] \),
- \(f \) admits (at least first-order) partial derivatives,
- “but \(X \) is not available.”

Definition (increasing case). \(f \) is said to be increasing with respect to its \(j \)th variable if:

\[\forall x^{j-1} \in \prod_{j \neq j} [a_j, b_j], \quad x^{j} \rightarrow f(x) \text{ is increasing.} \]

Proposition. \(f \) is increasing with respect to its \(j \)th variable if, and only if,

\[\frac{\partial f}{\partial x^j}(x) \geq 0 \quad \forall x \in X. \]

Quantitative monotonicity indicators

Several quantities of interest (nonlinear functionals of \(f \)):

- extrema of the partial derivatives:

\[M^*_j(f) = \max_{x \in \mathcal{X}} \frac{\partial f}{\partial x^j}(x), \quad \text{and} \quad M^*_j(f) = \max_{x \in \mathcal{X}} \frac{\partial f}{\partial x^j}(x), \]

with \(x \in \mathcal{X} \) is an hyper-rectangle: \(X = \prod_{j=1}^d [a_j, b_j] \),
- “positivity rate” of the partial derivatives:

\[\alpha_j(f) = \mu(\Gamma_j(f)), \quad \text{where} \quad \Gamma_j(f) = \left\{ \frac{\partial f}{\partial x^j} \geq 0 \right\}, \]

where \(\mu \) is a given probability measure on \(X \).

Proposed (Bayesian) approach:

- Endow \(f \) with a Gaussian Process prior,
- Estimate the monotonicity indicators, and quantify the uncertainty surrounding them, using conditional simulations of the partial derivatives.

Prediction and simulation of derivatives: cokriging

Consider a classical GP model:

\[f(x) \sim \mathcal{GP}(\beta_j(x), k_j(x, \cdot)) \]

\[\beta_j, \ldots, \beta_h \text{ known functions, which admit first-order partial derivatives (typically, polynomial functions)} \]

\[k_j \text{ a stationary covariance function (for simplicity).} \]

Theorem (see, e.g., Stein, 1999). Let \(k_0(h) = k_0(x, x + h) \). The random process \(f \) is mean-square differentiable if, and only if, \(k_0 \) is twice differentiable at \(h = 0 \).

Theorem (Scheuerer, 2010). The random process \(f \) is mean-square differentiable if, and only if, the partial derivatives exist almost surely in Sobolev’s weak sense.

Useful fact. Cokriging is just a special case of kriging with an auxiliary discrete variable:

\[\tilde{f}(x, j) = \left\{ \begin{array}{ll} f(x) & \text{if } j = 0, \\ \frac{\partial f}{\partial x^j}(x) & \text{if } j > 0. \end{array} \right. \]

No need to replace your favorite kriging software (if it is flexible enough . . .)

Industrial test case \(d = 7 \)

The methodology has been applied to an industrial test case proposed by EDF R&D

- Goal: assess the performance of a passive component in a power plant,
- Thermomechanical numerical code, \(d = 7 \) quantitative input factors.

Implementation => discretizations

- Intractable posterior distributions for the quantitative monotonicity indicators: we rely on conditional simulations,
- Approximate computation of the indicators themselves using a Monte Carlo sample. \(x_1, \ldots, x_m \) \((m = 200) \)

Simulation scheme

- \(R = 100 \) iid draws of the spatial MC in-sample,
- \(S = 500 \) iid conditional simulations on each of them,
- \(RS = 50,000 \) (dependent) conditional samlepaths.

Cokriging example: prediction and 95%-CI

The true function \(f^\dagger \) (black line) is observed at six locations (red vertical dotted lines). The kriging prediction (red line) and CI (black dashed lines) are performed using a zero-mean GP model, with a Matérn 5/2 covariance function.

Cokriging example: conditional simulations

Same setup as above. Observes that the samplepaths of \(f^\dagger \) are rougher than those of \(f \).

Future work

Work is in progress on

- Advanced simulation techniques for excursion sets (see Ginsbourger et al., 2014, for a preview): will replace the crude MC-based technique used here,
- Stepwise uncertainty reduction (using ideas from Bect et al., 2012): will be used to enrich a given initial design to learn more precisely the value of the indicators \(\alpha_j, M^*_j, \) or the set \(\Gamma_j \) itself!

References

