A variational Bayesian approximation approach via a sparsity enforcing prior in acoustic imaging

Abstract : Acoustic imaging is an advanced technique for acoustic source localization and power reconstruction from limited noisy measurements at microphone sensors. To solve this ill-posed inverse problem, the Bayesian inference methods using proper prior knowledge have been widely investigated. In this paper, we propose to use a hierarchical Variational Bayesian Approximation for the robust acoustic imaging. And we explore the Student's-t priors with heavy tails to enforce source sparsity and non-Gaussian noises, so that we can achieve the super spatial resolution and wide dynamic range of source powers. In addition, proposed approach is validated by simulations and real data from wind tunnel in automobile industry.
Type de document :
Communication dans un congrès
WIO 2014, Jul 2014, Neuchâtel, Switzerland. Proceedings of the 2014 13th Workshop on Information Optics, pp.1 - 4, 2014, 〈10.1109/WIO.2014.6933297〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal-supelec.archives-ouvertes.fr/hal-01103751
Contributeur : Alexandra Siebert <>
Soumis le : jeudi 15 janvier 2015 - 12:45:36
Dernière modification le : mardi 10 avril 2018 - 11:46:04
Document(s) archivé(s) le : jeudi 16 avril 2015 - 10:35:52

Fichier

WIO2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Ning Chu, Ali Mohammad-Djafari, Nicolas Gac, José Picheral. A variational Bayesian approximation approach via a sparsity enforcing prior in acoustic imaging. WIO 2014, Jul 2014, Neuchâtel, Switzerland. Proceedings of the 2014 13th Workshop on Information Optics, pp.1 - 4, 2014, 〈10.1109/WIO.2014.6933297〉. 〈hal-01103751〉

Partager

Métriques

Consultations de la notice

357

Téléchargements de fichiers

145