Aero-acoustics source separation with sparsity inducing priors in the frequency domain

Abstract : The characterization of acoustic sources is of great interest in many industrial applications, in particular for the aeronautic or automotive industry for the development of new products. While localization of sources using observations from a wind tunnel is a well-known subject, the characterization and separation of the sources still needs to be explored. We present here a Bayesian approach for sources separation. Two prior modeling of the sources are considered: a sparsity inducing prior in the frequency domain and an auto-regressive model in the time domain. The proposed methods are evaluated on synthetic data simulating noise sources emitting from an airfoil inside a wind tunnel.
Type de document :
Communication dans un congrès
34th International Workshop on Bayesian Inference and Maximun Entropy Methods in Science and Engineering (MaxEnt'14), Sep 2014, Amboise, France. Proceedings of the 34th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 1641, pp.422 - 431, 2014, 〈10.1063/1.4906006〉
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal-supelec.archives-ouvertes.fr/hal-01103779
Contributeur : Alexandra Siebert <>
Soumis le : jeudi 15 janvier 2015 - 13:40:31
Dernière modification le : lundi 9 juillet 2018 - 14:56:07
Document(s) archivé(s) le : vendredi 11 septembre 2015 - 06:50:11

Fichier

maxent2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Olivier Schwander, José Picheral, Nicolas Gac, Ali-Mohammad Djafari, Daniel Blacodon. Aero-acoustics source separation with sparsity inducing priors in the frequency domain. 34th International Workshop on Bayesian Inference and Maximun Entropy Methods in Science and Engineering (MaxEnt'14), Sep 2014, Amboise, France. Proceedings of the 34th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 1641, pp.422 - 431, 2014, 〈10.1063/1.4906006〉. 〈hal-01103779〉

Partager

Métriques

Consultations de la notice

1460

Téléchargements de fichiers

315