A hierarchical variational Bayesian approximation approach in acoustic imaging

Abstract : Acoustic imaging is a powerful technique for acoustic source localization and power reconstruction from limited noisy measurements at microphone sensors. But it inevitably con-fronts a very ill-posed inverse problem which causes unexpected solution uncertainty. Recently, the Bayesian inference methods using sparse priors have been effectively investigated. In this paper, we propose to use a hierarchical variational Bayesian approximation for robust acoustic imaging. And we explore the Student-t priors with heavy tails to enforce source sparsity, and to model non-Gaussian noise respectively. Compared to conventional methods, the proposed approach can achieve the higher spatial resolution and wider dynamic range of source powers for real data from automo-bile wind tunnel.
Type de document :
Communication dans un congrès
AIP Conference Proceedings. Bayesian Inference and Maximum Entropy Methods in Science and Engineering - MaxEnt 2014, Sep 2014, Amboise, France. Proceedings of the 34th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 1641, pp.572 - 579, 2015, 〈10.1063/1.4906024〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal-supelec.archives-ouvertes.fr/hal-01103784
Contributeur : Alexandra Siebert <>
Soumis le : jeudi 15 janvier 2015 - 13:46:00
Dernière modification le : mardi 10 avril 2018 - 11:46:04
Document(s) archivé(s) le : jeudi 16 avril 2015 - 10:40:51

Fichier

Maxent2014-CHU.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Ning Chu, Ali Mohammad-Djafari, Nicolas Gac, José Picheral. A hierarchical variational Bayesian approximation approach in acoustic imaging. AIP Conference Proceedings. Bayesian Inference and Maximum Entropy Methods in Science and Engineering - MaxEnt 2014, Sep 2014, Amboise, France. Proceedings of the 34th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 1641, pp.572 - 579, 2015, 〈10.1063/1.4906024〉. 〈hal-01103784〉

Partager

Métriques

Consultations de la notice

337

Téléchargements de fichiers

140