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Abstract: This paper provides a new methodology for the  forward problemis the determination of the output signal
characterization of a defect embedded in a conductive non-  knowing all the characteristics of the scanned object.
magnetic plate from the measurement of theimpedancevari-
ations of an air-cored pancake coil at eddy current frequen- A. Mathematical model
cies. Theinversion problem is dealt with using the Expected

Improvement (El) global optimization algorithm. The effi- The solution of the forward problem is obtained by the
ciency of the approach isdiscussed in thelight of preliminary  classicalvolume integral approacfi] and afield decom-
numerical examples obtained using synthetic data. position The electric field at a position in the plate is

Keywords: ENDE, global optimization, inver se problem, re- written as a sum of two terms:
sponse surface, kriging ‘
E(r) = E'() + E°(1), (1)
|. INTRODUCTION

) ) o whereE' is theincident field(in a flawless plate), anB¢
This paper deals with the characterization of a 3D deyg e defect fieldi.e. the distortion of the field due to the

fect inside a flat isotropic non-magnetic metal plate, fromy,. The current dipole densiti€sandP' are defined by
measured variations of the impedance of an eddy current

testing (ECT) probe coil driven by low-frequency time- p(r) = (o(r) - 00) E(r) and P'(r) = (o(r) - o0) E'(r).
harmonic current. The probe is an air-cored, pancake-type
coil, moved above a damaged zone. The data consists offhe interaction of the EM field of the coil with the flaw
map of the variations of the coil impedance due to the preszan be described by an integral equation that operates a
ence of the defect, at discrete locations of a planar surfaagupling of the two terms in (1) on the domaifi:
above and parallel to the plate.

As illustrated by a large number of contributions in the  p(r) = pi(r) — j‘UIJOO'OX(r)f Grir)P(ry dv’.  (2)
last ten years, the retrieval of 3D scattering objects — such vd
as defect_s — remains qU|t_e challenging fro_m a theo_retlcalrhe so-called defect description functipfr) is defined as
computational an@r experimental perspective, even in the
case of the simplest configurations (e.g., a homogeneous
embedding space). In this paper, an optimization-based x(r) =
inversion method is presented. We use the so-cdtbed

pected Improvement (EI) algorithm to perform the opti-The notationGg(r|r’) refers to the related dyadic Green’s
mization task. The EI algorithm is well-known in the do-function which transforms the current dipole excitation at

main of global optimization, but to the best of our knowl-!’ INto the generated electric fieldmtOnce (2) is solved,

edge, it is the first time that it is used for the ECT prohlem the variation of the coil impedance can be expressed as
First, we present the forward problem and its numerical 1 _

simulation. Then the inverse problem — along with our reg- AZ = 1z fd E'(r) - P(r)av

ularizing assumptions — will be presented. Next the new 0V

stochastic approach and the Optimization task will be irbased on the reciprocity theorem. deﬁjenotes the cur-

the focus. Finally, numerical examples will illustrate the rent of the probe coil.

method proposed and the conclusions of the experiments

will be drawn. B. Numerical simulation

A MATLAB code has been developed to solve the for-
ward problem. The integral equation (2) is solved by a

The object to be analyzed is a homogeneous, nonsalerkin version of a Method of Moments using pulse ba-
magnetic infinite metal plate with conductivity, and  sis functions (the defect is discretized using a set of uni-
thicknessl. We assume the presence of a volumetric mateform, cuboid-shaped disjunct cells and the unkn&waur-
rial flaw inside the plate in a region denoted4y, which  rent dipole density is assumed to be constant in each of
changes the electric conductivity locally. An electricdiel them). In so doing the integral equation (2) is transformed
is generated by the ECT probe coil, which is an air-coredinto a system of linear equations, which can be written in
pancake-type coil with turns parallel to the plate. Thea matrix form and where the unknowns are the approxi-
impedance of the coil changes due to the presence of theate values oP in each cell, the entries of the left-hand
flaw. The impedance variation is the output signal. Theside matrix are approximations gf(r|r’), and the entries

o(r)— oo

Il. THE FORWARD PROBLEM



Probe coil

of the right-hand side are the excitations of the system re- Ly
lated to the incident field. The latter can be expressed i EEEEE
analytical form in the case of the simple configurationw | |: ‘
have choseng(r|r’) is expressed and integrated in closea-
form in the spectral domain, and is calculated in the spatial
domain via FFT.
A considerable advantage of the field decomposition
method is that it separates the computation of the incident
field and of the Green’s function. The latter is a relativelyrigure 1.  The ROI in the plate contains the assumed defeathaias
time-consuming task, but it has to be performed only onceix geometric parameters.
—then the system matrix related to any defect can be easily
assembled from the stored data (obviously, for the same. . . .
( sty signal obtained by simulatiofZ(p), k=1,...,N}, and
plate parameters, frequency and cell sizes). Beyond th% !
. . . the measured on@AZy, k= 1,..., N}, by tuning the pa-
fast generation of the equation system for an arbitrary de-
rameter vectop.

fect, the computation of the variation of coil impedance at The parameter spageconsists oM discrete parameter
a lagre number of locations does not take practically more P P P

time than the computation at only one single location sinc® 0|Ii1ts.Ialr:](()eri;nrsetarec:e,natIGZd-cijr:n;tienszlonal sectiorFoh the
the system matrix remains the same when the coil is move P P . 9. =
To give a mathematical form to the resemblance between

ing from point to point. . . o
9 P P two surface-scan impedance signals, we definsithéar-
I11. THE INVERSE PROBLEM ity function

Lz

ROI

(a) On thex-y plane. (b) Along thez axis.

When the probe coil scans the zone containing the flaw, N N
the_ variations of the coil impedz_;mce are measured at each Q(p) = Z IAZ(p) - AZ?/ Z IAZ[%. 3
point of a regular rectangular grid. The problem is to char- k=1 k=1
acterize the flaw from the set of measured impedance varié biective is th S . find
ations, which will now be viewed as the input data of the ©U" 0lective is thus to minimiz(p), i.e. to fin
inverse problem. A -

P b = argminQ(p).

A. Regularizing assumptions

Itis classical to introduce somegularizing assumptions V. STOCHASTIC MODELING AND OPTIMIZATION OF THE
to reduce the ill-posedness of the inverse problem. Here, SIMILARITY FUNCTION

we suppose a cuboid-shaped homogeneous material flaw,oyr opjective is to implement the Expected Improve-
with known orientation — the defect has sides parallel tqyent algorithm to minimiz&(p). One iteration of such
the plate surface_s. A defept is then char.a_cterized by Seveth algorithm involves mainly two steps:

parameters depicted by Fig. 1. the position of the flaw iS 1y he construction of an approximation of the similarity
described by three parameterg @ndy. denote the cen- function from a set of past evaluations of the function
ter point on thex-y plane, z is the position of the upper obtained at previous iterations. To this end, a random
side), the edge lengths are described by three parameters process is chosen as a model of the similarity func-
(Lx, Ly andL; in the related direction) and one parameter tion and an interpolation by kriging is performed.

Qesgrlbes the cgnducuvnyﬂi. In the examples present.ed 2) the search of the maximum of the Expected Improve-
in this paper,o- is assumed to be zero (air void), which ment over the parameter space

reduces the number of parameters to be estimated to only
six geometrical parameters. We will see that there is no
practical dificulty in treating seven or even more unknown 12
defect parameters. To simplify the notations, the unknown
defect parameters are collected in a veptor t0p ~ .

p= [XC, Lx, Ye, Ly, Z, LZ].

The definition domain op will be denoted byp, and will

be referred to as thearameter space FFer ’ ]
A surface scan consists in moving the coilNadiffer-
ent locations above i@gion of interest (ROljsee Fig. 1). 4 1

The (simulated) variation of the coil impedance at location
k induced by a cuboid-shaped defect characterized by its .|
parameter vectgr will be denoted by\Z(p), whereas the
measured impedance variation at the same location will be
denoted by\ Zx.

-5 -4 -3 -2 -1 0 1 2 3 4 5
Yo
. . . . . Ay .
B. Optimization task Figure 2. Points of thg.-Ly section of the parameter spaeeAy is the

. . . cell size alongy of the ROI discretization. The figure is related to Fig. 1
The next step for solving the inverse problem is to- the number of ROI cells alongis 11 and defects smaller thanare

achieve the strongest resemblance between the impedarigesred.



This two-step procedure is repeated iteratively until @sto of the covariance betwegm and the observation points:
ping criterion is met, i.e. a sequential optimization algo-k(p) = [k(p, p1) k(p,p2) ... k(p,pn)]". It can be shown

rithm is obtained. that the determination af(p) boils down to computing the
solution of the linear system of equations (see, e.g., [4]):
A. Kriging interpolation
Let us assume that we have already observed the mul- K 1 A(p) K(p)
tivariate scalar functior®(p) at n pointsps, p2, ..., pPn 1 = (8)
of P. Then, n function valuesQ; = Q(p1), Q2 = 1 1o 1
Q(P2), ..., Qn = Q(pn) are known. We would like to e 1 #(p)

predict the function value at unobserved sites. One methog@hereu(p) is the Lagrange multiplier, which correspond
to achieve this goal is to useriging, a random process to the enforcement of the unbiasedness condition.
approach developed in the 60s in geostatistics [2]. The Once the vector(p) has been computed, a predicted
method is also well-known for modeling computer simu-value of the similarity functiol(p) can be written as
lations [3]. n

Let £(p) be a Gaussian random process that models the AN —
functionQ(p). Thus, each observatidp is considered as ) ; AP Qe @)
the realization of the Gaussian random variagf®) (k = ) ) .
1, 2,.... n). Kriging computes théest linear unbiased It is easy to show that the functign— Q(p) interpolates
predictor (BLUP)of &(p). Let us denote this prediction Q(P) at observed points. An interesting property of krig-
by &(p). The predictor idinear in the sense that it is a N, is that an estimate of the uncertainty of the prediction

linear combination of the observed random varia(es), is available via the kriging error, which can be written as
k=1, 2, ..., n,which can therefore be written as 52(p) = k(p, p) — A(0)"K(P) - 1(p). (10)
n
&(p) = Z (P)E(PK). (4)  Thisfeature will be essential in the adaptive sampling stra
=) egy of the Expected Improvement algorithm.

Unbiasedness relates to the fact that theanof &(p) is B Covariance model

equal to the mean @f(p), i.e. the mean prediction erroris  Before focusing on the optimization algorithm, we men-

zero: . tion very briefly how the covariance function is chosen in
E[e(p)] = E[&é(p) — £(p)] = O. (5) practice (see also [4]).

First, a simplifying assumption is made — as usually done
in geostatistics [2] — namely that the random process is
stationary Then, the covariance function is a one-variate
function k(h) whereh is a distancebetween two points
Pa, Pp € P. This distanceneeds not to be the classical

~200y _ 2y _ — El(Z(p) — 2 (6 Euclidean distance. In our case, the componenfs ©ff
7(p) = varls(p) = £(P)] [(£(p) = £(P))’] ©) are of diferent kinds. Thus, it is reasonable to use some

The term “best” means that the prediction er(p) of the
kriging predictor has themallest variancamong all un-
biased predictors. This variance (also cakeding error)

may be written as

using the unbiasedness condition (5). anisotropic distance, which may be written as

The objective is to find the cdigcientsAk(p) in (4) that 5 2
achieve the BLUP. The kriging error can be written us- h= Z Pad — Poa (11)
ing the covariance function, which describes the depen- P £d '

dence between two random variables of the process at dif-

ferent points. Let us denote the covariance function byvhereP,q4 andPy 4 are thed components of the vectors
K(Pa, Po) = COV[E(pa), £(pw)], Wherep, andp, are two  pa andpy, respectively, and the dimension of?. The
points inP. Let us denote b, the covariance matrix parametergy, d = 1,2,..., D, represent theangeof the
whose entries correspond to the covariances of the randoeovariance, or theéypical correlation distancein the di-

process between the observation pomtspa, ..., pn: rection of thed component.
Second, a parameterized covariance function is chosen
k(p1,p1) k(p1.p2) ... k(p1,pn) and its parameters are estimated using the data withxa
k(p2,p1) k(p2.p2) ... k(p2,pn) imum likelihoodmethod (see, e.g, [4]). We use thiatern

covariance function, which can be written as

k(pn, k(pn, ... k(pn, 2 v

(Pn.P1)  K(pn. P2) (Pn, Pn) ) = = 2wh) K (2\5h).  (12)
If one has some prior knowledge on the function to be 27T)
modeled it can be reflected by giving a prior mean to thavhere %, is the modified Bessel function of the second
predictor. Since in our case no information is availablekind of orderv. The parameter controls the regularity
but the observed function values, a constant (but unknowrgf the random process — the higher theéhe more regular

meanE[£(p)] = C is assumed. the process is. The parametet is the varianceof the
To simplify the notations let us collect the dbeients processK(0) = 02). The parametergy in (11) are also
Ak(p) into a vectord(p) = [A1(p) 2(p) ... A(p)]T, and  estimated by maximum likelihood (the covariance function

denote byk(p) the vector whose elements are the valuesas indeed + 2 parameters).



C. Expected Improvement 15

Since the similarity functiorQ (to be minimized) re-
quires to compute the solution of a forward problem,
the computational cost of evaluatil@yis non-negligible.
Moreover, for an inversion method to be useful in practice,
the computational burden of the method must not be too
high. Thus, we wish to limit the number of evaluations of
Q in the inversion procedure, which means that the opti- o ‘ ‘ ‘
mization method used to minimiZ@ must be ficient. O; —0‘-5 0 0;5 1

Theexpected improvement (Ed)gorithm is an iterative '
method to find the global minimizers of an expensive-to-
evaluate function [5]. The method is based on interpolation
by kriging of the function to be optimized. Let us assume

0.1r

that Q has been evaluated atpointsQ; = Q(p1), Q2 = -1 05 0 05 1
Q(pZ)a oy Qn = Q(pn)- An iteration of the ElI algorlthm Figure 3. lllustration of a kriging interpolation and caspandingEl.
provides the location of the next evaluation. Top: similarity function of one variable (continuous line), ebgations

; ; i) ; f (circles), kriging prediction (dashed line), uncertaintgelated to the pre-
First, an mterpolatlorQ of Qis computed by krlglng dicted kriging error (dotted line) Bottom: the expected improvement.

from the set of past evaluations, along with the varianceote that the maximizer of the El and the minimizer of theripeation
of the kriging errora®(p). Denote the current minimal are not necessarily the same.

.....

overQmin at a pointp € P by TaBLE |: PARAMETERS OF THE ECT CONFIGURATION.

| = max o ] Metal plate

() (@ Qmin = Q(p)) Thickness | 1.25mm | Conductivity | 1P ym

. . Probe coll

quever’ Q(p) IS annOWn except at the eyaluatlon Inner radius 0.6 mm Outer radius 1.6 mm
points. SinceQ(p) is modeled by the Gaussian random | Height 08mm | Lift-off 0.5 mm
processt, a natural idea is to express the expected value| No- of turns 140 < rfacerrfaqr‘:e”Cy 150 kHz
of 1(p), which is called the egpected im.provement and ap- points inthe xdir T 59 Points in the y dir. | 59
pears to have a very convenient analytical form: Stepinthe xdir. | 0.2mm | Stepintheydir | 0.2 mm

El(p) = E[I(p)] = 3(p) [uD(U) + ¢(u)],  (13)
) S _ The ROI of all the performed experiments is the same:
whered(-) is the normal cumulative distribution function, the number of cells along both theandy directions is

¢() is the normal density function, ands defined by 7, along thez axis is 10, respectively. Therefore, the total
A number of cells is 490. The center of the ROI on g
u= M . plane is at the origin of th&y coordinate system as it is
a(p) shown in Fig. 1. The cell sizes arax = Ay = 0.2 mm,

The next evaluation point is chosen according to the highAz = 0.125 mm —i.e. the ROI takes place along the total
est value of the expected improvement. Since (13) i$hickness of the plate and has an extension#fiim along
straightforward to compute, the maximization of the Elthexandy directions.
overP is not a problem in practice. A natural stopping The number of cells of the ROI partly determines the 6-
criterion is when theEl is smaller than a small positive dimensional parameter space on which the optimization is
number. Fig. 3 presents a kriging interpolation and correperformed. The maximal defect sizes cannot exceed the
spondingEl| criterion. size of the ROI, obviously. For physical — and plausible —
Note that theE| algorithm is known to be consistent, i.e. reasons, minimal defect sizes also have to be fixed. In our
the algorithm converges to the location of the global min-case, the minimal defect edge lengths are chosen as the
imizer (under some assumptions) [6], [7]. In theory, thedouble cell edge lengths along each direction. In this way,
convergence rate is unknown but it appears in practice th&fter some computation (notice the regularity in Fig. 2),
this type of algorithm converges very rapidly, as illustcht one can see that the number of points of the discrete pa-

in our numerical studies (see next section). rameter space is 15860.
Since no real measurement was performed, the so-called
V. NUMERICAL EXAMPLES “measured impedance variatiofAZy, k = 1,...,N in

In this section a couple of numerical examples have beefB)) of the defects in the assumed test cases are obtained
chosen to illustrate the presented inversion method. They numerical simulation. To avoid thisverse crimephe-
parameters of the ECT configuration are shown in Table Inomenon the latter are computed using the CIVA sim-
The surface scan consists of 3481 measured impedanutation software [8] whereas our algorithm was used to
values — observed at the nodes of a rectangular grid chagompute the “simulated impedance variationZ{(p), k =
acterized by the parameters given in Table I. The centel, ..., Nin(3)). In addition, the volume discretization used
of the surface scan is at the origin of tikey coordinate in CIVA is different (finer) from the cell sizes of our ROI.
system and the edges of the grid are parallel to the relatedWe have seen that the El algorithm needs an initializa-
coordinate axes. tion at the beginning, i.e. the similarity function has to be



TaBLE |I: T HE INITIAL OBSERVATION POINTS. at the related iteration cycle is presented. One can see that
itis decreasing as the iterations are being performed. How-

X X_yflane e T ZZX'S 5 ever, the decrease is not monotonous. Tlfigcdity of set-
No. ‘ Ax | ax | Ay | &y || No ‘ Az ‘ Az ting a correct stopping limit to the El is obvious: in the
ﬁ% gg % 225? g Z; g g case of defect No. #4 an E| limit of 1®would work well,
#3 1 25| 2 | 25| 2 #2| 5 | 5 but the same limit in the case of defect No. #1 would make
#4 | 25| 2 | 25| 2 the algorithm miss the solution.
-0 T I I One may notice a strange phenomenon in Fig. 4. At
#7 | 0 3 0 3 the iteration cycle No. 44, a very small similarity function
#8 | -25| 2 0 7 value is obtained — approximately the same value as the
jfo 2(')5 % 2(_’5 ; final solution at cycle No. 88. The assumed defects corre-
#1| 0 7 | 25| 2 sponding to these cycles are very close to each other and

to the real defect, obviously. However, in the El algorithm,
the pure value of the objective function is involvaidectly
neither in the choice of the next point nor in the stopping
criterion — as it has been expounded.

When the iterations are completed, the parameter point
[No. [ x [ L« [ % [ Ly | 2 [ L | ] correspondingto the minimal observed similarity function

TaBLE |lI: PARAMETERS OF THE DEFECTS TO BE CHARACTERIZED
(0.1 MM, EXACT/RECONSTRUCTED).

#1 | 23| 34 | -10 | 7/6 00 2525 88 P ; : ;
w2 T2 56 1 98 0 5 5 value (w_h|ch is als_o marked in the figures) is returned as
#3 2/1 54 12 9/10 7.56.25 5/5 113 the solution of the inverse prOblem.

# | 00 | 1J14 | 00 | 1J14 5/5 755 | 31 The computations were performed on a PC with 16 Gb

# |22 ] 96 [ -0 | 96 |3793/5] 55 | 8] RAM and a 64 bits CPU at 3 GHz. The computation of
the Green'’s function and of the incident field was made in
advance, separately. One average iteration cycle of the op-

observ_ed at some poi_nts before s_,tz_ir_ting t_he iteratiye IOoﬁ'rmization loop took approximately 70 sec, of which 20%
Tr_]ere is no “best” choice of these initial points. O,bV'OUSIV is the evaluation of the similarity function and 80% is for
it is reasonable to spread them more or less uniformly oR. . 1 hastic tools

the parameter space. Too few points can give misleading
information on the similarity function whereas too many os
points may be unnecessary (thus “uneconomical” in the o
sense of computation time). In all of our experiments here, |
33 initial points have been chosen. They are summarized |
in Table 1I: 11 points on the 4B¢-Ly-yc-Ly subspace and

3 points on the 2Dx-L, subspace. All the possible pairs
of points from these two sets are taken therefore totally we
have 33 points.

The algorithm has been applied on fivéfdient defects, Z
two inner cracks (#1-#2), two outer cracks (#3-#4) and a -t
buried one. Their physical parameters are summarized in -3
Table Ill — along with the values retrieved by the inversion |
algorithm. In the last column, the number of the iteration | A
cycle, in which the minimum similarity function value was -7, - - - o ™ o
found, is presented. Note that the iteration starts after th - )
33 initial function evaluation. One can see in Table I that\f;?“jf Ahl/l-ininggfeercits'\rlr?érlfeldngt:tcl)cr)r?: ?Jgt'l)‘? &“g;’:xisg‘;'ffgegzgtm_
the inversion algorithm performs well in the sense that  provement. Both diagrams are in the function of the iteratiamber.

1) the retrieved defect parameters are quite close to the

real ones. (Note that in some cases exact matching is
not possible due to the discretization of the ROl and VI. CoNcrLusioNs

so the parameter space.) A new methodology in ECT inversion was presented.
2) the number of function evaluations needed to get thehe stochastic-based optimization algorithm was coupled
minimizer is considerably low in comparison with \ith a volume integral-based forward solver — the devel-
the total number of points of the parameter spacgped inversion method seems to liagent in the light of
(158 760). the presented test cases.
Obviously, 1) proves that the applied forward solver is pre- The use of the kriging interpolation can be regarded as
cise, that the inversion has been traced back correctly to an alternative way of electromagnetic field computation.
optimization task and that the El algorithm finds the globalin fact, the kriging interpolation of the similarity funoti
minimizer of the similarity function. Moreover, 2) allows (which is the output of an electromagnetic “black-box”)
us to think that the El algorithm is quitéfective. makes possible to have a view of the similarity function
The performance of the algorithm is illustrated in Fig. 4 at unobserved points, i.e. without classical field computa-
and Fig. 5. On the bottom diagrams, the maximal expectetion. In other words, the forward simulator (complicated,
improvement (i.e. over the total discrete parameter spacé)me-consuming to run) is replaced in some sense with an

-15r
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Figure 5. Defect No. #4Top: log of the current similarity function
value. Minimizer is markedBottom: log of the maximal expected im-
provement. Both diagrams are in the function of the iteratiamber.

emulator a surrogate model. This kind of surrogate mod-
eling of electromagnetic phenomena has been a popular
method for years and now seems to be having its “second
honeymoon” [9]. Several methods exist for the solution of
electromagnetic optimization problems. The main novelty
of this paper is the introduction of such an existing (and
widely used in other domains) optimization method in the
domain of the ECT inverse problems.

In the developed inversion algorithm, the forward solver
and the optimization method fits to each other in a natu-
ral way. The applied volume integral method provides no
gradient information of the similarity function — but the
optimization part does not need it at all, since the El is
a derivative-less algorithm. The EI algorithm helps us to
choose the next “best” evaluation point amondiscrete
set of points on the parameter space. The method of vari-
ating the number of the defect cells is just a discrete vari-
ational problem, which can be easily transformed to an El
optimization task.

A pitfall of the El algorithm is the very well-known prob-
lem of all iterative loops: setting the stopping criterianc
rectly is not easy and no general solution has been found
yet. We have seen that the maximal expected improvement
can give us a good guess whether it is worth to continue the
iterations — but it was also shown that a fixed small num-
ber as the stopping limit of the maximal El in one case can
make the iteration stop before finding the minimizer while
in other case it causes several “unnecessary” iterations af
ter finding the solution — even if the configurations in the
two cases are very similar.

In this paper, only the brief introduction of the stochastic
tools and the first results were presented — the research is
far from being finished. In the authors’ opinion, the use of
surrogate models in ECT inversion is a hopeful idea.
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