Modelling of flawed riveted structure for EC inspection in aeronautics
Séverine Paillard, Yahya Choua, Grégoire Pichenot, Yann Le Bihan, Marc Lambert, Hubert Voillaume, Nicolas Dominguez

To cite this version:

HAL Id: hal-01104131
https://hal-supelec.archives-ouvertes.fr/hal-01104131
Submitted on 16 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The industrial demand is to detect efficiently flaws located nearby a fastener.

- Need of Eddy Current inspection for flawed fastened structure

The semi-analytical model

The state equation

\[\mathbf{E}_h(x) = \mathbf{G}^{(2)}(x) - j\omega \mu_0 \sum_{\ell} \int_{V_h} \mathbf{G}^{(0)}_{\ell}(x, x') [\mathbf{h}_\ell(x') - \mathbf{f}_\ell(x')] \, dx' \]

Primary field in the layer \(a \)

Dyadic Green’s functions

Linear system from state equation (MoM) Solution by Matrix inversion or iterative resolution

Theoretical Formulation

The dyadic Green’s functions are solution of

\[\nabla \times \nabla \times \mathbf{G}^{(0)}(x, x') - j\omega \mu_0 \mathbf{G}^{(0)}(x, x') = \delta(x-x') \]

The response of the probe is obtained via the reciprocity theorem

\[\mathbf{I}_f \, \Delta s = \sum_{\ell} \int_{V_h} [\mathbf{h}_\ell(x') - \mathbf{f}_\ell(x')] \mathbf{G}^{(0)}_{\ell}(x, x') \cdot \mathbf{E}_0(x') \, dx' \]

where \(\mathbf{I}_f \) is the current density of the probe, \(\Delta s \) the excitation volume and \(\epsilon \) the dielectricity constant.

Configuration Zeng & al (ACES’07)

Good agreement with the data published in “Reduced Magnetic Vector Potential and Electric Scalar Potential Formulation for Eddy Current Modeling”

Z. Zeng & al

Validation on an aeronautical configuration

Flaw response (\(= \) total response – rivet response)

Conclusion

- Comparison with published data (Zeng & al configuration)
 Good agreement with the Potential Formulation

- Validation with experimental data (aeronautical configuration)
 Good agreement with FE once calibrated, exhibiting Typical signature of the flaw in simulations

Perspectives

- Optimization of the discretization in order to improve the simulation of a flawed rivet
 Best efficiency of the method

- Simulation of other rivet inspection techniques

Contact: civa@cea.fr
http://www-civa.cea.fr