M. Schröder, E. Bevacqua, R. Cowie, F. Eyben, H. Gunes et al., Building Autonomous Sensitive Artificial Listeners, IEEE Transactions on Affective Computing, vol.3, issue.2, pp.165-183, 2012.
DOI : 10.1109/T-AFFC.2011.34

R. Niewiadomski, J. Hofmann, J. Urbain, T. Platt, J. Wagner et al., Laugh-aware virtual agent and its impact on user amusement, Proceedings of the Twelfth International Conference on Autonomous Agents and Multiagent Systems, pp.619-626, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00869751

R. Niewiadomski, S. Pammi, A. Sharma, J. Hofmann, R. T. Tracey et al., Visual laughter synthesis: Initial approaches, Proceedings of the Interdisciplinary Workshop on Laughter and other Non-Verbal Vocalisations, pp.10-11, 2012.

J. Urbain, H. Cakmak, and T. Dutoit, Evaluation of HMM-based laughter synthesis, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.7835-7839, 2013.
DOI : 10.1109/ICASSP.2013.6639189

D. Pomerleau, Alvinn: An autonomous land vehicle in a neural network, Advances in Neural Information Processing Systems (NIPS 1988), pp.305-313, 1988.

N. Ratliff, J. A. Bagnell, and S. S. Srinivasa, Imitation learning for locomotion and manipulation, 2007 7th IEEE-RAS International Conference on Humanoid Robots, pp.392-397, 2007.
DOI : 10.1109/ICHR.2007.4813899

S. Ross and J. A. Bagnell, Efficient reductions for imitation learning, Proceedings of the thirteenth International Conference on Artificial Intelligence and Statistics Conference Proceedings, pp.661-668, 2010.

U. Syed and R. E. Schapire, A reduction from apprenticeship learning to classification, Advances in Neural Information Processing Systems (NIPS 2010), pp.2253-2261, 2010.

L. Breiman, H. Jerome, . Friedman, A. Richard, . Olshen et al., Classification and regression trees, 1984.

M. Thomas, P. E. Cover, and . Hart, Nearest neighbor pattern classification, IEEE Transactions on Information Theory, vol.13, issue.1, pp.21-27, 1967.

Y. Guermeur, A generic model of multi-class support vector machine, International Journal of Intelligent Information and Database Systems, vol.6, issue.6, pp.555-577, 2012.
DOI : 10.1504/IJIIDS.2012.050094

URL : https://hal.archives-ouvertes.fr/hal-00596175

B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin, Learning structured prediction models, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.896-903, 2005.
DOI : 10.1145/1102351.1102464

N. Ratliff, D. Bradley, A. Bagnell, and J. Chestnutt, Boosting Structured Prediction for Imitation Learning, Advances in Neural Information Processing Systems, 2007.

A. Grubb and J. A. Bagnell, Generalized boosting algorithms for convex optimization, Proceedings of the 28th International Conference on Machine Learning (ICML2011), 2011.

. Z. Naum, K. C. Shor, A. Kiwiel, and . Ruszcaynski, Minimization methods for non-differentiable functions, 1985.

J. Wagner, F. Lingenfelser, T. Baur, I. Damian, F. Kistler et al., The social signal interpretation (SSI) framework, Proceedings of the 21st ACM international conference on Multimedia, MM '13, pp.831-834, 2013.
DOI : 10.1145/2502081.2502223

S. Russell, Learning agents for uncertain environments (extended abstract), Proceedings of the eleventh annual conference on Computational learning theory , COLT' 98, pp.101-103, 1998.
DOI : 10.1145/279943.279964

E. Klein, M. Geist, B. Piot, and O. Pietquin, Inverse reinforcement learning through structured classification, Advances in Neural Information Processing Systems (NIPS 2012), pp.1016-1024, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00778624

B. Piot, M. Geist, and O. Pietquin, Learning from Demonstrations: Is It Worth Estimating a Reward Function?, Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2013 Prague (Czech Republic), pp.17-32, 2013.
DOI : 10.1007/978-3-642-40988-2_2

URL : https://hal.archives-ouvertes.fr/hal-00916938

S. Chandramohan, M. Geist, F. Lefèvre, and O. Pietquin, User simulation in dialogue systems using inverse reinforcement learning, Proceedings of the 12th Annual Conference of the International Speech Communication Association, pp.1025-1028, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00652446

O. Pietquin and T. Dutoit, A probabilistic framework for dialog simulation and optimal strategy learning, IEEE Transactions on Audio, Speech and Language Processing, vol.14, issue.2, pp.589-599, 2006.
DOI : 10.1109/TSA.2005.855836

URL : https://hal.archives-ouvertes.fr/hal-00207952

O. Pietquin and H. Hastie, A survey on metrics for the evaluation of user simulations, The Knowledge Engineering Review, vol.11, issue.01, pp.59-73, 2013.
DOI : 10.1016/j.csl.2009.03.002

URL : https://hal.archives-ouvertes.fr/hal-00771654