M. Baotic, F. Borrelli, A. Bemporad, and M. Morari, Efficient On-Line Computation of Constrained Optimal Control, SIAM Journal on Control and Optimization, vol.47, issue.5, pp.2470-2489, 2008.
DOI : 10.1137/060659314

A. Bemporad, F. Borrelli, and M. Morari, Min-max control of constrained uncertain discrete-time linear systems, IEEE Transactions on Automatic Control, vol.48, issue.9, pp.1600-1606, 2003.
DOI : 10.1109/TAC.2003.816984

G. Bitsoris, Positively invariant polyhedral sets of discrete-time linear systems, International Journal of Control, vol.82, issue.6, pp.1713-1726, 1988.
DOI : 10.1080/00207178808906132

F. Blanchini, Ultimate boundedness control for uncertain discrete-time systems via set-induced lyapunov functions. Automatic Control, IEEE Transactions on, vol.39, issue.2, pp.428-433, 1994.
DOI : 10.1109/cdc.1991.261708

F. Blanchini, Nonquadratic Lyapunov functions for robust control, Automatica, vol.31, issue.3, pp.31451-461, 1995.
DOI : 10.1016/0005-1098(94)00133-4

F. Blanchini and S. Miani, Set-theoretic methods in control, 2007.
DOI : 10.1007/978-3-319-17933-9

S. P. Boyd, L. Ghaoui, E. Feron, and . Balakrishnan, Linear matrix inequalities in system and control theory, SIAM, vol.15, 1994.
DOI : 10.1137/1.9781611970777

T. Gal, Postoptimal analyses, parametric programming and related topics, 1995.
DOI : 10.1515/9783110871203

E. G. Gilbert and K. T. Tan, Linear systems with state and control constraints: the theory and application of maximal output admissible sets, IEEE Transactions on Automatic Control, vol.36, issue.9, pp.1008-1020, 1991.
DOI : 10.1109/9.83532

A. Grancharova and T. A. Johansen, Explicit nonlinear model predictive control: theory and applications, 2012.
DOI : 10.1007/978-3-642-28780-0

P. Gutman and M. Cwikel, An algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states. Automatic Control, IEEE Transactions on, vol.32, issue.3, pp.251-254, 1987.

A. B. Hempel, P. J. Goulart, and J. Lygeros, Every continuous piecewise affine function can be obtained by solving a parametric linear program, Control Conference (ECC), p.2013

A. B. Hempel, P. J. Goulart, and J. Lygeros, Inverse parametric optimization with an application to hybrid system control. Automatic Control, IEEE Transactions on, vol.60, issue.4, pp.1064-1069, 2015.

M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, Multiparametric toolbox 3.0, Control Conference (ECC), 2013 European, pp.502-510, 2013.

C. N. Jones, P. Grieder, and S. V. Rakovi´crakovi´c, A logarithmic-time solution to the point location problem for parametric linear programming, Automatica, vol.42, issue.12, pp.422215-2218, 2006.
DOI : 10.1016/j.automatica.2006.07.010

E. C. Kerrigan, Robust constraint satisfaction: Invariant sets and predictive control, 2001.

H. K. Khalil, Nonlinear systems, p.323, 2002.

E. Kofman, H. Haimovich, and M. M. Seron, A systematic method to obtain ultimate bounds for perturbed systems, International Journal of Control, vol.18, issue.2, pp.167-178, 2007.
DOI : 10.1109/9.763226

I. Kolmanovsky and E. G. Gilbert, Maximal output admissible sets for discrete-time systems with disturbance inputs, Proceedings of 1995 American Control Conference, ACC'95, 1995.
DOI : 10.1109/ACC.1995.531239

I. Kolmanovsky and E. G. Gilbert, Theory and computation of disturbance invariant sets for discrete-time linear systems, Mathematical Problems in Engineering, vol.4, issue.4, pp.317-367, 1998.
DOI : 10.1155/S1024123X98000866

M. V. Kothare, V. Balakrishnan, and M. Morari, Robust constrained model predictive control using linear matrix inequalities, Automatica, vol.32, issue.10, pp.1361-1379, 1996.
DOI : 10.1016/0005-1098(96)00063-5

URL : http://authors.library.caltech.edu/28091/1/CDS95-011.pdf

D. Q. Mayne, M. M. Seron, and S. V. Rakovi´crakovi´c, Robust model predictive control of constrained linear systems with bounded disturbances, Automatica, vol.41, issue.2, pp.219-224, 2005.
DOI : 10.1016/j.automatica.2004.08.019

H. Nguyen, Constrained Control of Uncertain, Time- Varying, Discrete-Time Systems, 2014.
DOI : 10.1007/978-3-319-02827-9

URL : https://hal.archives-ouvertes.fr/hal-01257659

H. Nguyen, P. Gutman, S. Olaru, and M. Hovd, Implicit improved vertex control for uncertain, time-varying linear discrete-time systems with state and control constraints, Automatica, vol.49, issue.9, pp.2754-2759, 2013.
DOI : 10.1016/j.automatica.2013.05.007

URL : https://hal.archives-ouvertes.fr/hal-00917676

N. A. Nguyen, S. Olaru, P. Rodriguez-ayerbe, M. Hovd, and I. Necoara, Inverse parametric convex programming problems via convex liftings, Proc. of the 19th IFAC World Congress, 2014.
DOI : 10.3182/20140824-6-ZA-1003.02364

URL : https://hal.archives-ouvertes.fr/hal-01086492

N. A. Nguyen, S. Olaru, P. Rodriguez-ayerbe, M. Hovd, and I. Necoara, On the lifting problems and their connections with piecewise affine control law design, 2014 European Control Conference (ECC), pp.2164-2169, 2014.
DOI : 10.1109/ECC.2014.6862605

URL : https://hal.archives-ouvertes.fr/hal-01087243

N. A. Nguyen, S. Olaru, and P. Rodriguez-ayerbe, On the complexity of the convex liftings-based solution to inverse parametric convex programming problems, 2015 European Control Conference (ECC), 2015.
DOI : 10.1109/ECC.2015.7331064

URL : https://hal.archives-ouvertes.fr/hal-01140609

S. V. Rakovic, P. Grieder, M. Kvasnica, D. Q. Mayne, and M. Morari, Computation of invariant sets for piecewise affine discrete time systems subject to bounded disturbances, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), pp.1418-1423, 2004.
DOI : 10.1109/CDC.2004.1430242

. Mayne, Invariant approximations of the minimal robust positively invariant set. Automatic Control, IEEE Transactions on, vol.50, issue.3, pp.406-410, 2005.

S. V. Rakovic, B. Kouvaritakis, M. Cannon, C. Panos, and R. Findeisen, Parameterized tube model predictive control . Automatic Control, IEEE Transactions on, vol.57, issue.11, pp.2746-2761, 2012.
DOI : 10.1109/tac.2012.2191174

K. Rybnikov, Polyhedral partitions and stresses. Queen's University at Kingston, 2000.

F. Scibilia, S. Olaru, and M. Hovd, Approximate explicit linear MPC via Delaunay tessellation, European Control Conference, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00418337

P. O. Scokaert and D. Q. Mayne, Min-max feedback model predictive control for constrained linear systems, IEEE Transactions on Automatic Control, vol.43, issue.8, pp.431136-1142, 1998.
DOI : 10.1109/9.704989