Delayed exponential fitting by best tensor rank-(R1;R2;R3) approximation

Abstract : We present a subspace-based scheme for the estimation of the poles (angular-frequencies and damping-factors) of a sum of damped and delayed sinusoids. In our model each component is supported over a different time frame, depending on the delay parameter. Classical subspace based methods are not suited to handle signals with varying time-support. In this contribution, we propose a solution based on the best rank-(R1, R2, R3) approximation of a partially structured Hankel tensor on which the data are mapped. We show, by means of an example, that our approach outperforms the current tensor and matrix-based approaches in terms of the accuracy of the damping parameter estimates.
Type de document :
Communication dans un congrès
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Mar 2005, Philadephia, United States
Liste complète des métadonnées

https://hal-supelec.archives-ouvertes.fr/hal-01251650
Contributeur : Remy Boyer <>
Soumis le : mercredi 6 janvier 2016 - 15:22:08
Dernière modification le : jeudi 5 avril 2018 - 12:30:05

Identifiants

  • HAL Id : hal-01251650, version 1

Citation

Remy Boyer, Lieven De Lathauwer, Karim Abed-Meraim. Delayed exponential fitting by best tensor rank-(R1;R2;R3) approximation. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Mar 2005, Philadephia, United States. 〈hal-01251650〉

Partager

Métriques

Consultations de la notice

207