Bayesian subset simulation

Abstract : We consider the problem of estimating a probability of failure $\alpha$, defined as the volume of the excursion set of a function $f:\mathbb{X} \subseteq \mathbb{R}^{d} \to \mathbb{R}$ above a given threshold, under a given probability measure on $\mathbb{X}$. In this article, we combine the popular subset simulation algorithm (Au and Beck, Probab. Eng. Mech. 2001) and our sequential Bayesian approach for the estimation of a probability of failure (Bect, Ginsbourger, Li, Picheny and Vazquez, Stat. Comput. 2012). This makes it possible to estimate $\alpha$ when the number of evaluations of $f$ is very limited and $\alpha$ is very small. The resulting algorithm is called Bayesian subset simulation (BSS). A key idea, as in the subset simulation algorithm, is to estimate the probabilities of a sequence of excursion sets of $f$ above intermediate thresholds, using a sequential Monte Carlo (SMC) approach. A Gaussian process prior on $f$ is used to define the sequence of densities targeted by the SMC algorithm, and drive the selection of evaluation points of $f$ to estimate the intermediate probabilities. Adaptive procedures are proposed to determine the intermediate thresholds and the number of evaluations to be carried out at each stage of the algorithm. Numerical experiments illustrate that BSS achieves significant savings in the number of function evaluations with respect to other Monte Carlo approaches.
Type de document :
Article dans une revue
SIAM/ASA Journal on Uncertainty Quantification, ASA, American Statistical Association, 2017, 5 (1), pp.762-786. <http://epubs.siam.org/doi/10.1137/16M1078276>. <10.1137/16M1078276>
Liste complète des métadonnées


https://hal-supelec.archives-ouvertes.fr/hal-01253706
Contributeur : Julien Bect <>
Soumis le : mercredi 23 août 2017 - 16:16:36
Dernière modification le : lundi 28 août 2017 - 09:58:11

Fichier

M107827.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Julien Bect, Ling Li, Emmanuel Vazquez. Bayesian subset simulation. SIAM/ASA Journal on Uncertainty Quantification, ASA, American Statistical Association, 2017, 5 (1), pp.762-786. <http://epubs.siam.org/doi/10.1137/16M1078276>. <10.1137/16M1078276>. <hal-01253706v4>

Partager

Métriques

Consultations de
la notice

53

Téléchargements du document

38