F. Blanchini and S. Miani, Set-theoretic methods in control, 2008.
DOI : 10.1007/978-3-319-17933-9

D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, vol.36, issue.6, pp.789-814, 2000.
DOI : 10.1016/S0005-1098(99)00214-9

J. Löfberg, Minimax approaches to robust model predictive control, 2003.

S. Rakovic, B. Kouvaritakis, M. Cannon, C. Panos, and R. Findeisen, Parameterized Tube Model Predictive Control, IEEE Transactions on Automatic Control, vol.57, issue.11, pp.2746-2761, 2012.
DOI : 10.1109/TAC.2012.2191174

M. Bacic, M. Cannon, Y. Lee, and B. Kouvaritakis, General interpolation in mpc and its advantages Automatic Control, IEEE Transactions on, vol.48, issue.6, pp.1092-1096, 2003.

S. Nazin, B. Polyak, and M. Topunov, Rejection of bounded exogenous disturbances by the method of invariant ellipsoids, Automation and Remote Control, vol.68, issue.3, pp.467-486, 2007.
DOI : 10.1134/S0005117907030083

H. Nguyen, P. Gutman, S. Olaru, and M. Hovd, Robust optimization-based control of constrained linear discrete time systems with bounded disturbances, Proceedings of the 5th IFAC Symposium on System Structure and Control, pp.917-922, 2013.
DOI : 10.3182/20130204-3-FR-2033.00219

URL : https://hal.archives-ouvertes.fr/hal-00794353

Z. Jiang and Y. Wang, Input-to-state stability for discrete-time nonlinear systems, Automatica, vol.37, issue.6, pp.857-869
DOI : 10.1016/S0005-1098(01)00028-0

S. Boyd, L. Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory, Society for Industrial Mathematics, vol.15, 1994.
DOI : 10.1137/1.9781611970777

B. Polyak, Convexity of Quadratic Transformations and Its Use in Control and Optimization, Journal of Optimization Theory and Applications, vol.6, issue.3, pp.553-583, 1998.
DOI : 10.1023/A:1021798932766

M. Grant and S. Boyd, Cvx: Matlab software for disciplined convex programming Available http, 2008.

J. Rossiter, B. Kouvaritakis, and M. Bacic, Interpolation based computationally efficient predictive control, International Journal of Control, vol.6, issue.3, pp.290-301, 2004.
DOI : 10.1109/9.704994