A modified Auto Associative Kernel Regression method for robust signal reconstruction in nuclear power plant components

Abstract : The application of the Auto Associative Kernel Regression (AAKR) method to the reconstruction of correlat-ed plant signals is not satisfactory from the point of view of the robustness, i.e. the capability of reconstruct-ing abnormal signals to the values expected in normal conditions. To overtake this limitation, we propose to modify the traditional AAKR method by defining a novel measure of the similarity between the current measurement and the historical patterns. An application of the proposed modified AAKR method to the con-dition monitoring of a pressurizer of a Pressurized Water Reactor (PWR) Nuclear Power Plant (NPP) shows benefits with respect to the traditional AAKR method, in terms of earlier detection of abnormal conditions and correct identification of the signals responsible for triggering the detection.
Type de document :
Communication dans un congrès
European Safety and Reliability Conference ESREL, Sep 2014, Wroclaw, Poland. Safety and Reliability: Methodology and Applications
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal-supelec.archives-ouvertes.fr/hal-01262146
Contributeur : Pietro Turati <>
Soumis le : mardi 26 janvier 2016 - 12:20:23
Dernière modification le : lundi 7 mai 2018 - 14:29:53

Annexe

2014_ESREL_A modified Auto Ass...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01262146, version 1

Collections

Citation

Piero Baraldi, Francesco Di Maio, Pietro Turati, Enrico Zio. A modified Auto Associative Kernel Regression method for robust signal reconstruction in nuclear power plant components. European Safety and Reliability Conference ESREL, Sep 2014, Wroclaw, Poland. Safety and Reliability: Methodology and Applications. 〈hal-01262146〉

Partager

Métriques

Consultations de la notice

421

Téléchargements de fichiers

79