P. Baraldi, A. Cammi, F. Mangili, and E. Zio, Local Fusion of an Ensemble of Models for the Reconstruction of Faulty Signals, IEEE Transactions on Nuclear Science, vol.57, issue.2, pp.793-806, 2010.
DOI : 10.1109/TNS.2010.2042968

URL : https://hal.archives-ouvertes.fr/hal-00609155

P. Baraldi, M. Compare, and E. Zio, Maintenance policy performance assessment in presence of imprecision based on Dempster???Shafer Theory of Evidence, Information Sciences, vol.245, pp.112-131, 2013.
DOI : 10.1016/j.ins.2012.11.003

URL : https://hal.archives-ouvertes.fr/hal-00757462

P. Baraldi, D. Maio, F. Mangili, F. Zio, and E. , A belief function theory method for prognostics in clogging filters, Chemical Engineering Transactions, vol.33, pp.847-852, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00926991

P. Baraldi, F. Mangili, and E. Zio, Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data, Reliability Engineering & System Safety, vol.112, pp.94-108, 2013.
DOI : 10.1016/j.ress.2012.12.004

URL : https://hal.archives-ouvertes.fr/hal-00934547

P. Baraldi and E. Zio, A Combined Monte Carlo and Possibilistic Approach to Uncertainty Propagation in Event Tree Analysis, Risk Analysis, vol.8, issue.4, pp.1309-1325, 2008.
DOI : 10.1111/j.1539-6924.2008.01085.x

P. Baraldi and E. Zio, A Comparison Between Probabilistic and Dempster-Shafer Theory Approaches to Model Uncertainty Analysis in the Performance Assessment of Radioactive Waste Repositories, Risk Analysis, vol.18, issue.1, pp.1139-1156, 2010.
DOI : 10.1111/j.1539-6924.2010.01416.x

URL : https://hal.archives-ouvertes.fr/hal-00610490

P. Baraldi, E. Zio, G. Gola, D. Roverso, and M. Hoffmann, Two novel procedures for aggregating randomized model ensemble outcomes for robust signal reconstruction in nuclear power plants monitoring systems, Annals of Nuclear Energy, vol.38, issue.2-3, pp.2-3, 2011.
DOI : 10.1016/j.anucene.2010.11.007

URL : https://hal.archives-ouvertes.fr/hal-00609545

P. Baraldi, F. Mangili, and E. Zio, A prognostics approach to nuclear component degradation modeling based on Gaussian Process Regression, Progress in Nuclear Energy, vol.78, 2013.
DOI : 10.1016/j.pnucene.2014.08.006

URL : https://hal.archives-ouvertes.fr/hal-01340423

P. Baraldi, F. Di-maio, E. Zio, S. Sauco, E. Droguett et al., Ensemble of Neural Networks for Predicting Scale Deposition in Oil Well Plants Equipments, PSAM 11 & ESREL 2012 Conference, Joint Probabilistic Safety Assessment and Management Conference and European Safety and Reliability Conference, pp.25-29, 2012.

T. Benkedjouh, K. Medjaher, N. Zerhouni, and S. Rechak, Health assessment and life prediction of cutting tools based on support vector regression, Journal of Intelligent Manufacturing, vol.11, issue.5, 2013.
DOI : 10.1007/s10845-013-0774-6

URL : https://hal.archives-ouvertes.fr/hal-00867582

P. Bonissone, F. Xue, and R. Subbu, Fast meta-models for local fusion of multiple predictive models, Applied Soft Computing, vol.11, issue.2, pp.1529-1539, 2008.
DOI : 10.1016/j.asoc.2008.03.006

R. T. Clemen and R. L. Andwinkler, Aggregating probability distributions In Advances in Decision Analysis: from Foundations to Applications, pp.154-176, 2007.

P. Contal, J. Simao, D. Thomas, T. Frising, S. Callé et al., Clogging of fibre filters by submicron droplets. Phenomena and influence of operating conditions, Journal of Aerosol Science, vol.35, issue.2, pp.263-278, 2004.
DOI : 10.1016/j.jaerosci.2003.07.003

A. P. Dempster, Upper and lower probabilities induced by a multivariate mapping, Annals of Mathematical Statistics AMS, pp.325-339, 1976.

K. Goebel, B. Saha, and A. Saxena, A Comparison of Three Data-Driven Techniques for Prognostics, proc. of the 62nd Meeting of the Society For Machinery Failure Prevention Technology (MFPT), 2008.

N. Gorjian, L. Ma, M. Mittinty, P. Yarlagadda, and Y. Sun, A review on degradation models in reliability analysis, Proceedings of the 4th World Congress on Engineering Asset Management, pp.28-30, 2009.
DOI : 10.1007/978-0-85729-320-6_42

J. C. Helton, Alternative representations of epistemic uncertainty. Special Issue of Reliability Engineering and System Safety, pp.1-10, 2004.

J. Lee, J. Ni, D. Djurdjanovic, H. Qiu, and H. Liao, Intelligent prognostics tools and e-maintenance, Computers in Industry, vol.57, issue.6, pp.476-489, 2006.
DOI : 10.1016/j.compind.2006.02.014

R. Liu, L. Ma, R. Kang, and N. Wang, The modeling method on failure prognostics uncertainties in maintenance policy decision process, The Proceedings of 2011 9th International Conference on Reliability, Maintainability and Safety, pp.12-15, 2011.
DOI : 10.1109/ICRMS.2011.5979378

D. J. Mackay, Introduction to Gaussian processes, Neural networks and machine learning, pp.133-165, 1998.

R. Mann, R. Freeman, M. Osborne, R. Garnett, C. Armstrong et al., Objectively identifying landmark use and predicting flight trajectories of the homing pigeon using Gaussian processes, Journal of The Royal Society Interface, vol.239, issue.1, pp.210-219, 2011.
DOI : 10.1016/j.jtbi.2005.07.013

J. Mccall, Maintenance Policies for Stochastically Failing Equipment: A Survey, Management Science, vol.11, issue.5, pp.493-524, 1965.
DOI : 10.1287/mnsc.11.5.493

M. Mohanty, S. Chattopadhyay, A. Peralta, P. Das, and S. , Definitions of terms for reliability and maintainability. United States?department of defense Bayesian Statistic Based Multivariate Gaussian Process Approach for Offline/Online Fatigue Crack Growth Prediction, Experimental Mechanics, vol.24, issue.51, pp.833-843, 1981.

A. Mosallam, K. Medjaher, and N. Zerhouni, Data-driven prognostic method based on Bayesian approaches for??direct remaining useful life prediction, Journal of Intelligent Manufacturing, vol.24, issue.6, 2014.
DOI : 10.1007/s10845-012-0657-2

URL : https://hal.archives-ouvertes.fr/hal-01025442

B. H. Nystad, Condition-Based Maintenance (CBM) ? filter clogging at OKG 1, a case study, p.961, 2009.

S. Petit-renaud and T. Denoeux, Nonparametric regression analysis of uncertain and imprecise data using belief functions, International Journal of Approximate Reasoning, vol.35, issue.1, pp.1-28, 2004.
DOI : 10.1016/S0888-613X(03)00056-2

R. Polikar, Ensemble based systems in decision making, IEEE Circuits and Systems Magazine, vol.6, issue.3, pp.21-45, 2006.
DOI : 10.1109/MCAS.2006.1688199

R. Polikar, Bootstrap Inspired Techniques in Computational Intelligence, IEEE Signal Processing Magazine, vol.24, issue.4, pp.56-72, 2007.

C. Rasmussen and C. Williams, Gaussian Processes in Machine Learning, 2006.
DOI : 10.1162/089976602317250933

B. Ristic and P. Smets, Belief function theory on the continuous space with an application to model based classification, IPMU (Ed.), Information Processing and Management of Uncertainty, pp.1119-1126, 2004.
DOI : 10.1016/B978-044452075-3/50002-9

R. R. Yager and V. Kreinovich, Decision making under interval probabilities, International Journal of Approximate Reasoning, vol.22, issue.3, pp.195-215, 1999.
DOI : 10.1016/S0888-613X(99)00028-6

URL : http://doi.org/10.1016/s0888-613x(99)00028-6

M. Schwabacher and K. Goebel, A Survey of Artificial Intelligence for Prognostics. Association for the Advancement of Artificial Intelligence Fall Symposium, pp.9-11, 2007.

G. Shafer, A mathematical theory of evidence, 1976.

P. Smets, The Transferable Belief Model for Quantified Belief Representation, Handbook of Defeasible Reasoning and Uncertainty Management Systems, pp.267-301, 1998.
DOI : 10.1007/978-94-017-1735-9_9

P. Smets, Belief functions on real numbers, International Journal of Approximate Reasoning, vol.40, issue.3, pp.181-223, 2005.
DOI : 10.1016/j.ijar.2005.04.001

C. B. Song, H. S. Park, and K. W. Lee, Experimental study of filter clogging with monodisperse PSL particles, Powder Technology, vol.163, issue.3, pp.152-159, 2006.
DOI : 10.1016/j.powtec.2006.01.016

L. Tang, G. J. Kacprzynski, and K. Goebel, Vachtsevanos G. Methodologies for Uncertainty Management in Prognostics, Proc IEEE Aerosp Conf, 2009.

M. E. Tipping, Sparse Bayesian Learning and the Relevance Vector Machine, Journal of Machine Learning Research, vol.1, pp.211-244, 2001.

R. Yager, J. 34a-]-yan, M. Koc, and J. Lee, On the dempster-shafer framework and new combination rules, Information Sciences, vol.41, issue.2, pp.93-137, 1987.
DOI : 10.1016/0020-0255(87)90007-7

K. Yamada, A new combination of evidence based on compromise, Fuzzy Sets and Systems, pp.1689-1708, 2008.

G. Vachtsevanos and P. Wang, Fault prognosis using dynamic wavelet neural networks, 2001 IEEE Autotestcon Proceedings. IEEE Systems Readiness Technology Conference. (Cat. No.01CH37237), pp.857-870, 2001.
DOI : 10.1109/AUTEST.2001.949467

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

W. Wang, M. Carr, W. Xu, and K. Kobbacy, A model for residual life prediction based on Brownian motion with an adaptive drift, Microelectronics Reliability, pp.51-285, 2011.

T. Wang, J. Yu, D. Siegel, and J. Lee, A similarity-based prognostics approach for Remaining Useful Life estimation of engineered systems, 2008 International Conference on Prognostics and Health Management, 2008.
DOI : 10.1109/PHM.2008.4711421

R. R. Yager, On the fusion of imprecise uncertainty measures using belief structures, Information Sciences, vol.181, issue.15, pp.3199-3209, 2011.
DOI : 10.1016/j.ins.2011.02.010

W. Zhao, T. Tao, D. Zhuoshu, and E. Zio, A dynamic particle filter-support vector regression method for reliability prediction, Reliability Engineering & System Safety, vol.119, pp.109-116, 2013.

Z. Zhao, M. Fu-li-wang, S. Jia, and . Wang, Predictive maintenance policy based on process data, Chemometrics and Intelligent Laboratory Systems, vol.103, issue.2, pp.137-143, 2010.
DOI : 10.1016/j.chemolab.2010.06.009

E. Zio and M. Compare, Evaluating maintenance policies by quantitative modeling and analysis, Reliability Engineering & System Safety, vol.109, pp.53-65, 2010.
DOI : 10.1016/j.ress.2012.08.002

URL : https://hal.archives-ouvertes.fr/hal-00734272

E. Zio, D. Maio, and F. , A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system, Reliability Engineering & System Safety, vol.95, issue.1, pp.49-57, 2010.
DOI : 10.1016/j.ress.2009.08.001