Genetic algorithms for condition-based maintenance optimization under uncertainty

Abstract : This paper proposes and compares different techniques for maintenance optimization based on Genetic Algorithms (GA), when the parameters of the maintenance model are affected by uncertainty and the fitness values are represented by Cumulative Distribution Functions (CDFs). The main issues addressed to tackle this problem are the development of a method to rank the uncertain fitness values, and the definition of a novel Pareto dominance concept. The GA-based methods are applied to a practical case study concerning the setting of a condition-based maintenance policy on the degrading nozzles of a gas turbine operated in an energy production plant.
Type de document :
Article dans une revue
European Journal of Operational Research, Elsevier, 2015, 244 (2), pp.611-623. 〈10.1016/j.ejor.2015.01.057〉
Liste complète des métadonnées

https://hal-supelec.archives-ouvertes.fr/hal-01269867
Contributeur : Yanfu Li <>
Soumis le : vendredi 5 février 2016 - 13:57:01
Dernière modification le : jeudi 5 avril 2018 - 12:30:14
Document(s) archivé(s) le : samedi 12 novembre 2016 - 11:03:18

Fichier

09_Genetic Algorithms for Cond...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

M. Compare, F. Martini, Enrico Zio. Genetic algorithms for condition-based maintenance optimization under uncertainty. European Journal of Operational Research, Elsevier, 2015, 244 (2), pp.611-623. 〈10.1016/j.ejor.2015.01.057〉. 〈hal-01269867〉

Partager

Métriques

Consultations de la notice

202

Téléchargements de fichiers

65