Genetic algorithms in the framework of Dempster-Shafer Theory of Evidence for maintenance optimization problems

Abstract : The aim of this paper is to address the maintenance optimization problem when the maintenance models encode stochastic processes, which rely on parameters that are imprecisely known, and when these parameters are only determined through information elicited from experts. A genetic algorithms (GA)-based technique is proposed to deal with such uncertainty setting; this approach requires addressing three main issues: i) the representation of the uncertainty in the parameters and its propagation onto the fitness values; ii) the development of a ranking method to sort the obtained uncertain fitness values, in case of single-objective optimization; and iii) the definition of Pareto dominance, for multi-objective optimization problems. A known hybrid Monte Carlo-Dempster-Shafer Theory of Evidence method is used to address the first issue, whereas two novel approaches are developed for the second and third issues. For verification, a practical case study is considered concerning the optimization of maintenance for the nozzle system of a turbine in the Oil & Gas industry.
Type de document :
Article dans une revue
IEEE Transactions on Reliability, Institute of Electrical and Electronics Engineers, 2015
Liste complète des métadonnées

Littérature citée [55 références]  Voir  Masquer  Télécharger

https://hal-supelec.archives-ouvertes.fr/hal-01269870
Contributeur : Yanfu Li <>
Soumis le : vendredi 5 février 2016 - 13:59:14
Dernière modification le : lundi 7 mai 2018 - 14:02:24
Document(s) archivé(s) le : samedi 12 novembre 2016 - 10:23:50

Fichier

10_Genetic algorithms in the f...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01269870, version 1

Citation

Michele Compare, Enrico Zio. Genetic algorithms in the framework of Dempster-Shafer Theory of Evidence for maintenance optimization problems . IEEE Transactions on Reliability, Institute of Electrical and Electronics Engineers, 2015. 〈hal-01269870〉

Partager

Métriques

Consultations de la notice

328

Téléchargements de fichiers

71