S. Khan, L. Lorenzelli, and R. Dahiya, Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review, IEEE Sensors Journal, vol.15, issue.6, pp.3164-3185, 2015.
DOI : 10.1109/JSEN.2014.2375203

URL : http://doi.org/10.1109/jsen.2014.2375203

C. Yan, J. Wang, and X. Wang, An Intrinsically Stretchable Nanowire Photodetector with a Fully Embedded Structure, Advanced Materials, vol.13, issue.6, pp.943-950, 2014.
DOI : 10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H

M. Acuautla, S. Bernardini, and L. Gallais, Ozone flexible sensors fabricated by photolithography and laser ablation processes based on ZnO nanoparticles, Sensors and Actuators B: Chemical, vol.203, pp.602-611, 2014.
DOI : 10.1016/j.snb.2014.07.010

URL : https://hal.archives-ouvertes.fr/hal-01790092

A. Uddin, U. Yaqoob, D. Phan, and G. Chung, A novel flexible acetylene gas sensor based on PI/PTFE-supported Ag-loaded vertical ZnO nanorods array, Sensors and Actuators B: Chemical, vol.222, pp.536-543, 2016.
DOI : 10.1016/j.snb.2015.08.106

S. Matindoust, M. Baghaei-nejad, S. Abadi, and M. , Food quality and safety monitoring using gas sensor array in intelligent packaging, Sensor Review, vol.46, issue.5, pp.169-183, 2016.
DOI : 10.1109/SOCC.2007.4545482

C. Wang, L. Yin, and L. Zhang, Metal Oxide Gas Sensors: Sensitivity and Influencing Factors, Sensors, vol.41, issue.3, pp.2088-2106, 2010.
DOI : 10.1016/j.physe.2008.07.007

URL : http://www.mdpi.com/1424-8220/10/3/2088/pdf

G. Neri, First Fifty Years of Chemoresistive Gas Sensors, Chemosensors, vol.91, issue.1, pp.1-20, 2015.
DOI : 10.1088/1742-6596/450/1/012028

URL : http://www.mdpi.com/2227-9040/3/1/1/pdf

Y. Choi, I. Hwang, and J. Park, nanowire gas sensor with high sensitivity, Nanotechnology, vol.19, issue.9, p.95508, 2008.
DOI : 10.1088/0957-4484/19/9/095508

C. Li, M. Lv, J. Zuo, and X. Huang, SnO2 Highly Sensitive CO Gas Sensor Based on Quasi-Molecular-Imprinting Mechanism Design, Sensors, vol.6, issue.2, pp.3789-3800, 2015.
DOI : 10.1021/nn302020a

URL : http://www.mdpi.com/1424-8220/15/2/3789/pdf

V. Jimenez, J. Mejias, J. Espinós, and A. González-elipe, Interface effects for metal oxide thin films deposited on another metal oxide II. SnO2 deposited on SiO2, Surface Science, vol.366, issue.3, pp.545-555, 1996.
DOI : 10.1016/0039-6028(96)00831-X

C. Fu, J. Wang, and M. Yang, Effect of La doping on microstructure of SnO2 nanopowders prepared by co-precipitation method, Journal of Non-Crystalline Solids, vol.357, issue.3, pp.1172-1176, 2011.
DOI : 10.1016/j.jnoncrysol.2010.10.019

S. Supothina, R. Rattanakam, S. Vichaphund, and P. Thavorniti, Effect of synthesis condition on morphology and yield of hydrothermally grown SnO2 nanorod clusters, Journal of the European Ceramic Society, vol.31, issue.14, pp.2453-2458, 2011.
DOI : 10.1016/j.jeurceramsoc.2011.02.018

M. Sedghi, S. Mortazavi, Y. Khodadadi, and A. , Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method, Sensors and Actuators B: Chemical, vol.145, issue.1, pp.7-12, 2010.
DOI : 10.1016/j.snb.2009.11.002

C. Ma and X. Sun, Preparation and characterization of SnO2 nanoparticles with a surfactant-mediated method, Nanotechnology, vol.13, p.565, 2002.

Z. Zang, A. Nakamura, and J. Temmyo, Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application, Optics Express, vol.21, issue.9, p.11448, 2013.
DOI : 10.1364/OE.21.011448

Z. Zang and X. Tang, Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method, Journal of Alloys and Compounds, vol.619, pp.98-101, 2015.
DOI : 10.1016/j.jallcom.2014.09.072

T. Vidmar, M. Topi?, P. Dzik, O. Kra?ovec, and U. , Inkjet printing of sol???gel derived tungsten oxide inks, Solar Energy Materials and Solar Cells, vol.125, pp.87-95, 2014.
DOI : 10.1016/j.solmat.2014.02.023

M. Rieu, M. Camara, and G. Tournier, Fully inkjet printed SnO 2 gas sensor on plastic substrate, Sensors and Actuators B: Chemical, vol.236, pp.1091-1097, 2016.
DOI : 10.1016/j.snb.2016.06.042

URL : https://hal.archives-ouvertes.fr/hal-01330977

C. Brinker and G. Scherer, Sol-Gel Science The physics and chemistry of sol-gel processing, 1990.

S. Vallejos, I. Gràcia, and E. Figueras, Microfabrication of flexible gas sensing devices based on nanostructured semiconducting metal oxides, Sensors and Actuators A: Physical, vol.219, pp.88-93, 2014.
DOI : 10.1016/j.sna.2014.09.001

G. Dubourg, A. Segkos, and J. Katona, Fabrication and Characterization of Flexible and Miniaturized Humidity Sensors Using Screen-Printed TiO2 Nanoparticles as Sensitive Layer, Sensors, vol.30, issue.8, p.1854, 2017.
DOI : 10.1016/j.snb.2016.02.108

X. Yu, N. Zhou, and S. Han, Flexible spray-coated TIPS-pentacene organic thin-film transistors as ammonia gas sensors, Journal of Materials Chemistry C, vol.82, issue.40, p.6532, 2013.
DOI : 10.1103/PhysRevB.82.085302

Y. Kumashiro, H. Nakako, and M. Inada, Novel materials for electronic device fabrication using ink-jet printing technology, Applied Surface Science, vol.256, issue.4, pp.1019-1022, 2009.
DOI : 10.1016/j.apsusc.2009.05.134

G. Azzellino, A. Grimoldi, and M. Binda, Fully Inkjet-Printed Organic Photodetectors with High Quantum Yield, Advanced Materials, vol.60, issue.47, pp.6829-6833, 2013.
DOI : 10.1109/TED.2013.2259239

T. Eggenhuisen, Y. Galagan, and A. Biezemans, High efficiency, fully inkjet printed organic solar cells with freedom of design, Journal of Materials Chemistry A, vol.134, issue.14, pp.7255-7262, 2015.
DOI : 10.1016/j.solmat.2014.12.014

M. Singh, H. Haverinen, P. Dhagat, and G. Jabbour, Inkjet Printing-Process and Its Applications, Advanced Materials, vol.17, issue.6, pp.673-685, 2010.
DOI : 10.1002/10.1039/B903531A

L. Huang, Y. Huang, and J. Liang, Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors, Nano Research, vol.389, issue.7, pp.675-684, 2011.
DOI : 10.1038/39827

B. Derby, Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution, Annual Review of Materials Research, vol.40, issue.1, pp.395-414, 2010.
DOI : 10.1146/annurev-matsci-070909-104502

H. Köse, ?. Karaal, A. Aydin, and H. Akbulut, Structural properties of size-controlled SnO2 nanopowders produced by sol???gel method, Materials Science in Semiconductor Processing, vol.38, pp.404-412, 2015.
DOI : 10.1016/j.mssp.2015.03.028

F. Hoeng, J. Bras, and E. Gicquel, Inkjet printing of nanocellulose???silver ink onto nanocellulose coated cardboard, RSC Advances, vol.17, issue.6653, pp.15372-15381, 2017.
DOI : 10.1039/b700878c

D. Kaelble, Dispersion-Polar Surface Tension Properties of Organic Solids, The Journal of Adhesion, vol.2, issue.2, pp.66-81, 1970.
DOI : 10.1002/app.1967.070111118

D. Owens and R. Wendt, Estimation of the surface free energy of polymers, Journal of Applied Polymer Science, vol.13, issue.8, pp.1741-1747, 1969.
DOI : 10.1002/app.1969.070130815

A. Rudawska and E. Jacniacka, Analysis for determining surface free energy uncertainty by the Owen???Wendt method, International Journal of Adhesion and Adhesives, vol.29, issue.4, pp.451-457, 2009.
DOI : 10.1016/j.ijadhadh.2008.09.008

M. Bagheri-mohagheghi, N. Shahtahmasebi, and M. Alinejad, The effect of the post-annealing temperature on the nano-structure and energy band gap of SnO2 semiconducting oxide nano-particles synthesized by polymerizing???complexing sol???gel method, Physica B: Condensed Matter, vol.403, issue.13-16, pp.2431-2437, 2008.
DOI : 10.1016/j.physb.2008.01.004

F. Ely, C. Avellaneda, and P. Paredez, Patterning quality control of inkjet printed PEDOT:PSS films by wetting properties, Synthetic Metals, vol.161, issue.19-20, pp.2129-2134, 2011.
DOI : 10.1016/j.synthmet.2011.08.014

P. Bizi-bandoki, S. Benayoun, and S. Valette, Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment, Applied Surface Science, vol.257, issue.12, pp.5213-5218, 2011.
DOI : 10.1016/j.apsusc.2010.12.089

URL : https://hal.archives-ouvertes.fr/ujm-00757766

Q. Lu, M. Li, and J. Yin, Polyimide surface modification by pulsed ultraviolet laser irradiation with low fluence, Journal of Applied Polymer Science, vol.64, issue.11, pp.2739-2743, 2001.
DOI : 10.1063/1.111104

L. Hench and J. West, The sol-gel process, Chemical Reviews, vol.90, issue.1, pp.33-72, 1990.
DOI : 10.1021/cr00099a003

H. Shiomi, C. Kakimoto, A. Nakahira, and S. Takeda, Preparation of SnO2 monolithic gel by solgel method, Journal of Sol-Gel Science and Technology, vol.19, issue.1/3, pp.759-763, 2000.
DOI : 10.1023/A:1008751814783

I. Kadhim, A. Hassan, and H. , Effects of glycerin volume ratios and annealing temperature on the characteristics of nanocrystalline tin dioxide thin films, Journal of Materials Science: Materials in Electronics, vol.303, issue.2, pp.3417-3426, 2015.
DOI : 10.1016/S0022-3093(02)00944-4

W. Lee and A. Routh, Why Do Drying Films Crack?, Langmuir, vol.20, issue.23, pp.9885-9888, 2004.
DOI : 10.1021/la049020v

Z. Jin, H. Zhou, and Z. Jin, Application of nano-crystalline porous tin oxide thin film for CO sensing, Sensors and Actuators B: Chemical, vol.52, issue.1-2, pp.188-194, 1998.
DOI : 10.1016/S0925-4005(98)00272-X

M. Tiemann, Porous Metal Oxides as Gas Sensors, Chemistry - A European Journal, vol.18, issue.30, pp.8376-8388, 2007.
DOI : 10.1002/chem.200700927

J. Tamaki, A. Miyaji, and J. Makinodan, Effect of micro-gap electrode on detection of dilute NO2 using WO3 thin film microsensors, Sensors and Actuators B: Chemical, vol.108, issue.1-2, pp.202-206, 2005.
DOI : 10.1016/j.snb.2004.09.047

S. Lee, Electrodes for Semiconductor Gas Sensors, Sensors, vol.12, issue.4, p.683, 2017.
DOI : 10.1103/PhysRev.71.717

URL : http://www.mdpi.com/1424-8220/17/4/683/pdf