P. J. Winzer, D. T. Neilson, and A. R. Chraplyvy, Fiber-optic transmission and networking: the previous 20 and the next 20 years, Opt. Express, vol.26, issue.18, pp.24-190, 2018.

H. Kaushal and G. Kaddoum, Optical communication in space: challenges and mitigation techniques, IEEE Commun. Surveys Tuts, vol.19, issue.1, pp.57-96, 2016.

F. Heine, G. Mühlnikel, H. Zech, S. Philipp-may, and R. Meyer, The european data relay system, high speed laser based data links, 7th IEEE Adv. Satellite Multimedia Sys. Conf. and 13th Signal Proc. for Space Commun. Workshop (ASMS/SPSC), pp.284-286, 2014.

A. Belmonte and J. M. Kahn, Capacity of coherent free-space optical links using atmospheric compensation techniques, Opt. Express, vol.17, issue.4, pp.2763-2773, 2009.

, Satellite downlink coherent laser communications, Optical Wireless Communications, pp.325-343, 2016.

R. Mata-calvo, J. Poliak, J. Surof, A. Reeves, M. Richerzhagen et al., Optical technologies for very high throughput satellite communications, Free-Space Laser Communications XXXI, vol.10910, 2019.

P. Conroy, J. Surof, J. Poliak, and R. Mata-calvo, Demonstration of 40 gbaud intradyne transmission through worst-case atmospheric turbulence conditions for geostationary satellite uplink, Appl. Opt, vol.57, issue.18, pp.5095-5101, 2018.

K. Saucke, C. Seiter, F. Heine, M. Gregory, D. Tröndle et al., The tesat transportable adaptive optical ground station, Int. Conf. on Space Optics (ICSO), vol.9739, p.973906, 2016.

Y. Shoji, M. J. Fice, Y. Takayama, and A. J. Seeds, A pilot-carrier coherent leo-to-ground downlink system using an optical injection phase lock loop (oipll) technique, J. Lightw. Technol, vol.30, issue.16, pp.2696-2706, 2012.

W. Rosenkranz and S. Schaefer, Receiver design for optical intersatellite links based on digital signal processing, 18th IEEE Int. Conf. on Transparent Opt. Networks (ICTON), pp.1-4, 2016.

T. Ando, E. Haraguchi, K. Tajima, Y. Hirano, T. Hanada et al., Coherent homodyne receiver with a compensator of doppler shifts for inter orbit optical communication, Free-Space Laser Communication Technologies XXIII, vol.7923, p.79230, 2011.

S. Schaefer, M. Gregory, and W. Rosenkranz, Numerical investigation of a free-space optical coherent communication system based on optical phase-locked loop techniques for highspeed intersatellite data transmission, 16th VDE-ITG Symp. on Photonic Networks, pp.69-74, 2015.

F. Roddier, Adaptive optics in astronomy, 1999.

E. A. Valencia, Atmospheric compensation experiments on free-space optical coherent communication systems, 2015.

U. Mengali and A. N. , Synchronization techniques for digital receivers, 1997.

D. Divsalar, Autonomous Software-Defined Radio Receivers for Deep Space Applications, p.63, 2006.

J. A. López-salcedo, J. A. Peral-rosado, and G. Seco-granados, Survey on robust carrier tracking techniques, IEEE Commun. Surveys Tuts, vol.16, issue.2, pp.670-688, 2013.

L. Moller, Novel aspects of spectral broadening due to fiber amplifier phase noise, J. Quantum Electron, vol.34, issue.9, pp.1554-1558, 1998.

E. Rochat and R. Dandliker, New investigations on the effect of fiber amplifier phase noise, IEEE J. Sel. Topics Quantum Electron, vol.7, issue.1, pp.49-54, 2001.

I. Ricciardi, S. Mosca, P. Maddaloni, L. Santamaria, M. D. Rosa et al., Phase noise analysis of a 10 watt yb-doped fibre amplifier seeded by a 1-hz-linewidth laser, Opt. Express, vol.21, issue.12, pp.14-618, 2013.

G. C. Valley, Isoplanatic degradation of tilt correction and short-term imaging systems, Appl. Opt, vol.19, issue.4, pp.574-577, 1980.

J. L. Bufton, Comparison of vertical profile turbulence structure with stellar observations, Appl. Opt, vol.12, issue.8, pp.1785-1793, 1973.

T. D. Kudielka and E. Fischer, Numerical prediction and experimental validation of irradiance fluctuations in a pre-compensated optical feeder link, vol.11180, 2019.

N. Védrenne, J. Conan, M. Velluet, M. Séchaud, M. Toyoshima et al., Turbulence effects on bidirectional ground-to-satellite laser communication systems, IEEE Int. Conf. on Space Opt. Systems and Applications (ICSOS), 2012.

R. J. Noll, Zernike polynomials and atmospheric turbulence *, J. Opt. Soc. Am, vol.66, issue.3, pp.207-211, 1976.

N. A. Roddier, Atmospheric wavefront simulation using zernike polynomials, Opt. Eng, vol.29, issue.10, pp.1174-1181, 1990.

N. Védrenne, J. Conan, C. Petit, and V. Michau, Adaptive optics for high data rate satellite to ground laser link, vol.9739, 2016.

M. Born and E. Wolf, Principles of Optics, 6-th ed. Pergamon, 1980.

S. Shaklan and F. Roddier, Coupling starlight into single-mode fiber optics, Appl. Opt, vol.27, issue.11, pp.2334-2338, 1988.

B. J. Klein and J. J. Degnan, Optical antenna gain. 1: Transmitting antennas, Appl. Opt, vol.13, issue.9, pp.2134-2141, 1974.

K. A. Winick, Atmospheric turbulence-induced signal fades on optical heterodyne communication links, Appl. Opt, vol.25, issue.11, pp.1817-1825, 1986.

R. E. Wagner and W. J. Tomlinson, Coupling efficiency of optics in single-mode fiber components, Appl. Opt, vol.21, issue.15, pp.2671-2688, 1982.

C. Robert, J. Conan, and P. Wolf, Impact of turbulence on highprecision ground-satellite frequency transfer with two-way coherent optical links, Phys. Rev. A, vol.93, p.33860, 2016.
URL : https://hal.archives-ouvertes.fr/obspm-02319561

S. Schaefer, M. Gregory, and W. Rosenkranz, Coherent receiver design based on digital signal processing in optical high-speed intersatellite links with m-phase-shift keying, Opt. Eng, vol.55, issue.11, 2016.

K. Ho, Phase modulated optical communication system, 2005.

S. Saliba and R. Scholten, Linewidths below 100 khz with external cavity diode lasers, Appl. Opt, vol.48, issue.36, pp.6961-6966, 2009.

J. R. Barry and E. A. Lee, Performance of coherent optical receivers, Proc. IEEE, vol.78, pp.1369-1394, 1990.

J. Ohlson, Exact dynamics of automatic gain control, IEEE Trans. Commun, vol.22, issue.1, pp.72-75, 1974.

M. Simon and J. Hamkins, Autonomous Software-Defined Radio Receivers for Deep Space Applications, 2006.

M. Simon, On the optimality of the map estimation loop for carrier phase tracking bpsk and qpsk signals, IEEE Trans.Commun, vol.27, issue.1, pp.158-165, 1979.

F. M. Gardner, Phaselock techniques, 2005.

T. Hodgkinson, Phase-locked-loop analysis for pilot carrier coherent optical receivers, Elec. Lett, vol.21, issue.25, pp.1202-1203, 1985.

E. Agrell and M. Secondini, Information-theoretic tools for optical communications engineers, IEEE Photonics Conf. (IPC), 2018.

V. Tikhonov, The effect of noise on phase-lock oscillation operation, Automatika i Telemekhanika, vol.20, issue.9, pp.1188-1196, 1959.

T. Jesupret, M. Moeneclaey, and G. Ascheid, Digital demodulator synchronization -Performance analysis. Final report ESTEC contract nr. 8437/89/NL/RE, 1991.

, She is currently pursuing her PhD in Optical Telecommunication at ONERA, the French Aerospace Lab, and the Institut Polytechnique de, collaboration with Télécom Paris, IMT-Atlantique and CNES. Her research focuses on space-to-ground optical coherent links using adaptive optics, 2017.

R. Le-bidan, M'03) received the Eng. Degree in Telecommunications and the M. Sc. Degree in Electrical Eng. from the Institut National des Sciences Appliquées (INSA), 2000.

, he has been working as an associate professor at IMT Atlantique (formerly ENST Bretagne), in the Signal & Communications dept. Current research interests focus on forward error correction and digital receiver design for coherent fiber and free-space optical transmission systems, D. degree in Electrical Eng. from the INSA, 2003.

. Jean-marc, He has been working for more than 20 years in the High Angular Resolution unit of ONERA, the French Aerospace Lab, on modeling of turbulence optical effects, optimal control for adaptive optics, and wide field tomographic adaptive optics. Originally interested in astronomical imaging, he now explores other applications that benefit from this background: impact of turbulence on ground-space optical links for, Conan received the Ph.D. degree from Institut d'Optique Graduate School, 1994.

, She is working on space to earth high data rate communications in RF and optics. She is involved in the study of future systems using optical data transmissions for space, Géraldine Artaud has been working for CNES since, 2006.