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Abstract

The transition from automated processes to mechanisms that manifest intelligence through cognitive abilities such as
memorisation, adaptability and decision-making in uncertain contexts, has marked a turning point in the field of indus-
trial systems, particularly in the development of cyber-physical systems and digital twins. This evolution, supported
by advances in cognitive science and artificial intelligence, has opened the way to a new era in which systems are able
to adapt and evolve autonomously, while offering more intuitive interaction with human users. This article proposes
a systematic literature review to gather and analyse current research on Cognitive Cyber-Physical Systems (CCPS),
Cognitive Digital Twins (CDT), and cognitive interoperability, which are pivotal in a contemporary Cyber-Physical
Enterprise (CPE). From this review, we first seek to understand how cognitive capabilities that are traditionally con-
sidered as human traits have been defined and modelled in cyber-physical systems and digital twins in the context of
Industry 4.0/5.0, and what cognitive functions they implement. We explore their theoretical foundations, in particular
in relation to cognitive psychology and humanities definitions and theories. Then we analyse how interoperability
between cognitive systems has been considered, leading to cognitive interoperability, and we highlight the role of
knowledge representation and reasoning.

Keywords: cognition, cognitive systems, cognitive cyber-physical systems, cognitive digital twin, cognitive
interoperability

1. Introduction

The rapid growth of technology in recent decades has not only redefined our understanding of enterprise systems
as complex systems that require integration and interoperability to function effectively [78], but also their interaction
with the environment. Much effort is currently put into technologies to sense the environment, digitalise observed sys-
tems and maintain a link between the physical and the digital/cyber components. The introduction of Cyber-Physical
Systems (CPS) and Digital Twin (DT) technologies, together with advances in Information and Communication Tech-
nologies (ICT), has been the major driving force for the 4th industrial revolution [9]. The term CPS refers to a
generation of systems with integrated computational and physical capabilities [64] that possesses three basic capa-
bilities [19]: intelligence (computation), connectedness (communication), and responsiveness (control). On the other
hand, the DT provides a thorough physical and digital representation, detailing key characteristics and actions of a
given component, product, or system [16, 1], to predict failures and opportunities for changing, to prescribe real time
actions for optimising and/or mitigating unexpected events [97]. Both CPS and DT are becoming an established part
of the modern industry [39], complementing each other and building overall enterprise systems where each physical
part can potentially be coupled with a digital replica.

The future industry tends to become a Cyber-Physical Enterprise (CPE) [88], which consists of autonomous and
cooperative technical elements, humans and sub-organisations that are connected based on the context within and
across all levels of the global organisation, from processes, through machines and up to enterprises and supply-chains
networks. The operation of a CPE increases the complexity to be managed by organisations and, consequently, the re-
quirements for interoperability, which refers to the fundamental ability of different computerised products or systems
to connect and exchange information without restriction, either in terms of implementation or access. Interoperability
is recognised as an essential requirement for Systems-of-Systems [89] and CPE [88]. But because of its specificity
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with autonomous and cooperative components, a CPE requires CPS with advanced capabilities with some level of
intelligence. This is especially required to cooperate efficiently with human agents. Indeed, the understanding of
information exchanged between two entities is the concern of conceptual, or semantic interoperability. Recognised
as the most problematic among the seven types of interoperability issues faced by any collaboration [87], semantic
interoperability is about attaching meaning (semantics) to information, thus transforming it into knowledge that can
be shared with a common understanding between entities or agents, be they artificial (machines, computers, ...) or
non-artificial (humans, ...). This type of interoperability is generally implemented using knowledge graphs (e.g. ontol-
ogy), which formalise concepts, relationships, and axioms, thus defining the domain of discourse [66]. They provide
a formal representation of knowledge that machines can theoretically process in the same way. Today ontology-based
solutions ensure that technological components (CPS) of a CPE share a common vocabulary and can reason on ex-
changed knowledge. However, machine-readable ontologies are not readable the same way by humans, who may
have different interpretations from those of machines, simply because they do not necessarily understand all the for-
malism and have specific ways of reasoning and interpreting, which may also differ from one individual to another.
Consequently, relying on ontologies is not always enough to ensure CPS and human agents understanding each other
enough to cooperate or collaborate efficiently in a CPE context. Reaching a mutual understanding allowing collabora-
tion implies not only interpreting the semantics (meaning) but understanding its contecy and the way it is interpreted
(reasoning), leading to actions, thus sharing a cognitive process. However, the common understanding of a situation
allowing collaboration between a set of heterogeneous entities might require more features, and in particular cognitive
entities and cognitive interoperability [80].

In this context, the aim of Artificial Intelligence (AI) is to equip artificial systems with abilities to process in-
formation and knowledge, learn, reason and make decisions [101]. However, given the complexity, unpredictability
and richness of the human life, as well as the multiple problems we tackle on a daily basis, it is clear that machines,
regardless of their artificial intelligence, cannot fully emulate or replace humans. With this in mind, the integration
of anthropomorphism can facilitate a better symbiosis between human and machine [109]. In particular if machines
should have human-like mental processes, this underlines the importance of infusing AI systems with elements of
human cognition, creating a seamless integration that exploits the best of both worlds. In 2018, the IoT European
Research Cluster highlighted that the next generation IoT should take a more human-centred perspective, where intel-
ligent objects have social capabilities allowing seamless interaction between autonomous systems and humans [104].
Similarly, on the cyber-physical systems side, it has been argued recently that a CPS misses a “Social” component
to become a Cyber-Physical-Social System (CPSS), able to collaborate with humans at the same level humans would
do [112]. Artificial systems, with cognitive capabilities, can not only perform tasks but also grasp context, anticipate
challenges and collaborate effectively with their human counterparts [96].

Cognition is mainly about knowledge and understanding. Although it is a research subject by itself, we can re-
fer to a well admitted definition used in human experimental psychology: “Cognition is all the processes by which
the sensory input is transformed, reduced, elaborated, stored, recovered, and used” [81]. These cognitive processes
or functions refer to the mental processes involved in acquiring knowledge, manipulating information and reason-
ing [55], and include perception, attention, memory, learning, reasoning, problem-solving, decision-making and
situational awareness [106]. As essential aspects of cognition, memorisation and the capability of learning allow
to manage knowledge, reason on it, and take decisions. With the advent of computing, it became clear that com-
puters, when properly programmed, have the potential to simulate this human ability [98], and this is the basis of
computational cognition or cognitive computing [116]. Although the first attempts at implementation date back to
the mid-twentieth century, the technological constraints of the time prevented any further development. Today, with
computers becoming ever more compact, powerful and fast, cognitive models are finding their way into a variety of
fields, from medicine and industry to physical systems and the analysis of large masses of data. The 2020 report of the
World Manufacturing Foundation on Manufacturing and AI1 highlights collaborative intelligence where humans and
AIs collaborate. AI cognition is considered through six components: learning, knowledge representation and reason-
ing, automated planning, natural language processing, perception. From the human perspective, it is highlighted that
AI can expand human cognition capabilities or taking it into account for tailored training and (re)skilling of workers.
However, the collaboration between human and AI supported by cognitive interactions is not yet addressed. There

1https://worldmanufacturing.org/report/report-2020/
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are different approaches or technologies qualified with the “cognitive” adjective and that implement partially cogni-
tive functions in industry 4.0/5.0 systems, however all have been qualified as cognitive systems. When they reach a
level of complexity that enables interaction similar to that observed between humans, cognitive systems realise the
human-machine symbiosis paradigm. In this context, the machine does not work for or in place of the human, but
collaboratively or symbiotically [105] with him.

The aspiration to create systems that not only ”understand” and ”learn” from their interactions but can also dy-
namically adapt to the changing needs of the user and ultimately collaborate with humans leads progressively to an
evolution of the Industry 4.0/5.0 technological pillars. The Cognitive IoT [104] has emerged some time ago in the
Internet of Things (IoT) community, while Cognitive Cyber- Physical Systems (CCPS) and Cognitive Digital Twins
(CDT) have been explored by researchers in enterprise systems. This study focuses on CCPS and CDT, leaving CIoT
out of our scope. CCPS, integrating closed-loop solutions with cybernetic and physical components equipped with
cognitive properties [102], stands out as a natural progression within this technological trajectory. The scope of CCPS
applications covers areas such as human-robot synergy, transportation system optimisation, advanced industrial pro-
cess automation, precision healthcare, and smart agriculture [48]. CDT adds capabilities to an industrial system, by
representing the virtual replica of a cognitive entity or process or adding cognitive abilities to it. Both CCPS and CDT
being cognitive systems, they are equipped with an artificial intelligence that in particular enables reasoning, decision-
making and autonomy. It is not just a static digital replica, but a dynamic, learning and evolving one. It predicts and
adapts to change, facilitating a deeper level of teamwork and interaction. The inherent attributes of CCPS include
their ability to compute anywhere, connect widely, reconfigure dynamically, automate at high levels, and operate in
a range from fully manual and supervised to fully independent and autonomous [48]. Not only do CDTs anticipate
and adapt to the requirements of their real-world partners, but CCPS also use these innovations to efficiently execute
complex operations in a variety of fields. This efficiency is greatly enhanced by the use of Knowledge Representation
and Reasoning (KRR) technologies, which enable a significant degree of independence and context awareness, due to
their dynamic nature and complex reasoning capability [67]. Indeed the exploitation of KRR by CCPS and CDT takes
advantage of advances in semantic technologies for reasoning and adaptation, but also to establish semantic interop-
erability. Ontology ensures that CCPS technological components share a common vocabulary, which is a prerequisite
for CCPS and CDT to reason about the knowledge exchanged. Knowledge graphs then enable CDT to capture the
dynamics and interactions within complex environments [54], facilitating better understanding and collaboration
between machines and humans [118].

1.1. Outcomes from previous expert review
The present article was initiated by an expert review focusing on cognitive interoperability and its enablers, in

Industry 5.0 settings where human-machine collaboration is sought [80]. It focuses on a subpart of what was addressed
in this preliminary work: cognitive CPS, DT, and Interoperability. The goal of the SLR here is to go deeper in this
focus, extracting the complete state-of-the-art on the subject as of today, and analysing it to answer the set of research
questions we list in the following section.

The important points highlighted by the expert review are the following. The article delves into the cognitive
dimension of human-machine interaction, highlighting how human mental processes such as attention, language,
learning, memory, perception, and thought [81] are crucial for knowledge management and decision-making. It
addresses social cognition, related to the theory of mind [17], and its significance in interpreting the intentions and
actions of others, referencing motor and perceptual resonance [110]. It then looks at cognitive interoperability within
the realm of AI, where human-machine collaboration is pivotal for the creation of collaborative cognitive agents,
an area known as cogni-culture [90]. Naudet et al. underscore the challenges of Hybrid Intelligence (HI), which
seeks to balance and learn from the interaction between humans and AI [4], and compares it with Augmented Hybrid
Intelligence (AHI), which involves combining human and AI cognitive capabilities for optimal complementarity,
especially through systems based on cognitive computing [116]. The discussion also encompasses how cognitive
systems and cognitive computing aim to mimic human interaction for better human-computer symbiosis [104], and
how cognitive architectures are crucial to enable these systems to observe, learn, and empathise [94]. Referring to
cognitive objects, it is highlighted how the IoT can be utilised to augment human intelligence by using technology for
more natural interactions [94]. The discussion expands to smart objects [59] and cognitive architectures, connecting
to cognitive psychology and neuroscience, and citing models like SOAR [106] and LIDA [38] for simulation. Finally,
the article addresses the integration of cognitive functions into Industry 4.0/5.0 through concepts such as Cognitive
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Automation [32], CCPS [51], and CDT [2, 1], highlighting their potential to enhance planning and optimisation in
various contexts. Naudet et al. conclude on the importance of cognitive interoperability for collaboration between
human operators and CPS, emphasising the need for social and communicative skills that are comprehensible to
humans in machines [21].

1.2. Scope
In our detailed analysis, we focused on papers that model, implement, study or experiment cognition in industrial

systems, especially CPS and DT. These systems are central in a CPE and constitute a crucial part of the modern
industrial landscape. Our review strictly emphasises articles that address the many facets of cognition in these systems,
ensuring a clear distinction from more general or tangent studies. Our primary attention is centred on understanding
the complex layers of cognition’s definition, modelling, and implementation as they apply to CPS and Digital Twins.
Consequently, articles of brief nature or those not diving deep into the pivotal role of cognition within these specific
contexts have been excluded. To deepen our comprehension of cognitive dimensions precisely within these cognitive
systems, we prioritised papers that discuss the theoretical foundations for cognitive integration in CPS and DT. We
also emphasised studies that address interoperability in cognitive systems and those that highlight KRR as an essential
tool for improving cognitive processes and ensuring seamless interoperability in the context of these systems.

1.3. Key Research Questions
The review protocol implemented in this study follows Kitchenham guidelines [56] to ensure a systematic review

of the literature, which structures the article around specific questions, aligned with the study objectives, to focus the
analysis on the main topics of interest. Our study examines how cognitive functions are modelled and implemented
in industrial environments, with a focus on CCPS and CDT systems. The aim is to better understand how cognitive
aspects are understood, defined and implemented in such systems and how they are used to improve the overall
industrial environment’s performance and interoperability, particularly in the context of Industry 4.0/5.0. This leads
us to the following set of research questions that guided our analysis, related to cognition in CPS and DT and cognitive
interoperability:

RQ1: How is cognition characterised and defined in the literature of cognitive psychology and human theories, and to
which extent cognitive CPS and DT refer to it in their own perspective?

RQ2: Which cognitive functions are integrated into CPS and DT?

RQ3: What particular methods, strategies or models are used to implement cognition in CPS and DT?

RQ4: What are the theoretical foundations of cognition used in CPS and DT, and how do they help to implement the
cognitive processes?

RQ5: How are cognitive CPS and DT conceptualised, implemented, and applied within the context of Industry 4.0?

RQ6: How can interoperability within industrial environments be enhanced by cognition, and is there a concept of
cognitive interoperability?

RQ7: What types of knowledge representation and reasoning approaches are commonly used in CPS and DT to
structure and manage relevant knowledge for specific cognitive tasks, and facilitate cognitive interoperability?

With these questions in mind, we address in detail the essential aspects of cognition within CCPS and CDT and ex-
plore the concept of cognitive interoperability as a fundamental key to effective human-CPS collaboration. Section 2
provides details of the relevant literature extraction strategy, including resource library selection, search query and
inclusion/exclusion criteria. Section 3 focuses on the definition of cognition according to cognitive psychology and
humanities theories, while exploring how industrial systems interpret and integrate cognition. It also details their spe-
cific cognitive characteristics, the strategies used and the theoretical foundations of satisfactory cognitive integration
(RQ1, RQ2, RQ3 and RQ4). Section 4 presents the definitions of a CCPS and a CDT in the literature, while exploring
(cognitive) interoperability among cognitive components and how KRR supports cognition and interoperability (RQ5,
RQ6 and RQ7). Section 5 then offers an in-depth reflection on our results, including a definition of cognitive systems,
CCPS and CDTs. Finally, section 6 concludes with the main results of our study and future perspectives.

4



2. SLR synthesis

2.1. Methodology

This subsection provides an overview of our approach to selecting relevant papers, including the steps involved in
databases selection, defining keywords and search strings, and filtering the papers. The search process encompasses
several activities, including the selection of digital libraries, formulation of the search string, execution of a pilot
search, refinement of the search string, and retrieval of an initial list of primary studies from the digital libraries that
match the search criteria.

2.1.1. Database selection
Prior to the search, it is essential to select an appropriate set of databases to enhance the likelihood of discovering

highly relevant articles. To achieve the broadest possible coverage of studies, the most widely used literature databases
in the field are explored. A comprehensive and expansive perspective is imperative to encompass a wide range of
literature. For our study, we have taken the following digital databases: Web Of Science (WOS); ACM Digital
Library; IEEE Xplore; Scopus; Pubmed. We chose to search through five databases, knowing that typically using at
least four is considered enough for a thorough literature search [57]. Notably, Scopus stands out among these five
because it is a comprehensive database that collects abstracts and citations from a variety of peer-reviewed journals.
The articles sourced from Scopus and WOS are published by a range of well-known publishers, including Elsevier,
Springer, Taylor & Francis Online, and IEEE, which helps in enhancing the thoroughness of our research. As is often
the case, we anticipate finding duplicate articles in our results, which will be filtered out. it is important to note that
each database requires a slightly different approach to query formulation. Therefore, we’ve adapted the search phrases
outlined in Section 2.1.2 accordingly to make sure we get the right results from each database.

2.1.2. Keywords and search strings definition
In order to find the articles allowing to answer our research questions, specific keywords were defined to compose

a search string. This string was split into search units and combined by boolean operators. Acronyms, synonyms, and
alternate spellings were also included. This way, keywords related to interoperability, digital twin, and cyber-physical
systems were interconnected using the boolean operator AND with cognition, leading to the following query:

“Cognition” AND (“Interoperability” OR “Digital Twin” OR “Cyber-Physical Systems”)

To ensure a comprehensive and systematic exploration of the literature, this search relied primarily on article metadata.
Metadata included titles, abstracts, authors and keywords, providing a structured framework for the rapid identification
of relevant articles dealing specifically with cognitive aspects in different systems. Such a choice is justified by the
efficiency of searching in academic databases, where metadata is carefully selected and validated by authors and
editors to reflect the core content of the article. Secondly, to mitigate the risk of not identifying relevant studies if the
metadata is not complete, the current method has been supplemented by a manual check of the references cited in the
articles initially identified, enabling the discovery of additional contributions that may not have been captured in the
initial metadata-based search. Table 1 summarises the total number of articles obtained from each database per search
string, providing an overview of the research outcomes. These articles have been then filtered according to the criteria
explained in the following section.

Publisher Databases Number of Articles
Scopus 503
Web Of Science 314
IEEE Xplore 175
ACM 64
Pubmed 23
Total 1079

Table 1: Number of papers retrieved from each publisher database
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2.1.3. Papers Filtering
During the filtering process, selection criteria are utilised to identify primary studies that directly address the

research questions, in accordance with the recommendations outlined in [56]. The inclusion and exclusion criteria are
formulated based on the research objectives and are documented from the protocol definition stage to minimise the
potential for bias.

Upon gathering all potentially relevant articles, a two-phase filtering process is undertaken to assess their rele-
vance. The first phase involves a thorough examination of the title, abstract, and keywords of each article to determine
their initial suitability. From this evaluation, articles are eliminated based on the specified exclusion criteria. This was
followed by a detailed examination of the full articles, enabling a more in-depth evaluation. Following this, articles
are further screened according to the defined inclusion criteria. The Exclusion/ inclusion criteria guiding this selection
process are detailed in Table 2. The selected articles and their descriptive analysis are shown in the next section (2.2).

E/I Criteria

Exclusion Duplicate papers
Papers not accessible: a paper without full text to be assessed
Papers written in other languages than English
Entire conference proceedings
Irrelevant primary studies
Redundant paper from a same author: it refers to situations where
an author publishes multiple papers on the same topic or with
highly overlapping content
Loosely related: articles that are not directly connected to the con-
cept of cognition

Inclusion Articles offering definitions
Studies providing answers to the research questions
Relevance papers: direct association with Cognition or featuring
Cognition as a key element within systems

Table 2: Exclusion and Inclusion Criteria

2.2. Descriptive Analysis of Papers

The initial search revealed 1079 references from the digital libraries, and 17 papers based on the snowball sam-
pling. We then applied filtering on the total of 1079 papers guided by a series of inclusion and exclusion criteria as
described in table 2. First we excluded those papers that are not accessible, not written in English and duplicates.
Consequently the number of considered papers dropped to 607. Moving forward, we analysed the rest of the papers,
considering their title, abstract and keywords. Thus, the number of considered papers dropped to 152. Moreover, after
reading and analysing the full text of the remaining papers according to inclusion and exclusion criteria, we selected
90 of them. Once the papers are selected, we classify them by the year of publication, country and application areas.
Table 3 shows the details of the selection phase.

Phase Total No of Papers

Total number of paper from digital libraries 1079
No of papers after snowballing sampling 1096
No of papers after exclusion based on the paper access, language and type of research 607
No of papers after exclusion based on title, abstract and keywords 152

No of papers after exclusion based on full text = No of included papers 90

Table 3: Paper selection phase.
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The study encompasses papers published up to July 2023. The temporal distribution of these publications is
depicted in Figure 1. There was a period of relatively low activity from 1995 to 2007, followed by a gradual increase
in publications from 2008 onwards. The number of articles fluctuated between 2011 and 2018, with no clear trend
of constant growth. A significant peak is observed in 2022, indicating a renewed and robust interest in Cognitive
Industrial Systems research in that year, suggesting an increase in the importance of the field.

Figure 1: Number of papers published per year.

Our study targets industrial environments. However the analysed articles address cognitive systems for a diverse
range of problems in multiple application areas. Figure 2 shows the distribution among these. Without surprise, a big
majority of articles concern Manufacturing and Industry 4.0. However it is interesting to see scores of some other
areas. Infrastructure, referred to in our study as ’smart cities’, shows a significant application of cognitive systems
in urban management and optimisation. Others refers to the process industry, the chemical industry, the automotive
industry and aerospace, and the cognitive enterprise thus bringing together a diversity of sectors that also have an
impact in cognitive systems. For example Aerospace, although being at the origins of the Digital twin concept, seem
to have a few interest for cognition. A few articles also refer to the Cognitive Enterprise but the concept seems only
emerging.

Figure 2: Application areas of cognitive systems.

In the following sections, we detail the answers to our search questions, starting with the foundations of cognition
exploited in articles, thus covering our first four questions.
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3. Theoretical Foundations for Systems’ Cognition

3.1. Cognition

In this section, we address RQ1: How is cognition characterised and defined in the literature of cognitive psychol-
ogy and human theories, and to which extent cognitive CPS and DT refer to it in their own perspective? Cognition
is a concept deeply rooted in cognitive psychology. It has been the subject of numerous studies and interpretations
over the years and several authors have drawn on human cognitive theory to explore this notion. Ulric Neisser, often
considered the father of cognitive psychology, was one of the first to lay the theoretical foundations of cognition. Ac-
cording to him [81] the cognition refers to the mental processes by which individuals perceive, think, understand and
interact with their environment. Central to these processes is the reception and interpretation of information [103],
which, when effectively integrated through experiences, senses, and learning [36], transforms into knowledge. This
knowledge is not merely an aggregation of information but represents a profound synthesis that facilitates understand-
ing, judgement, and decision-making [103]. This process involves not only the acquisition but also the retention and
utilisation of knowledge [83]. Then, human theories of cognition were established. Allen Newell [82] brought the
notion of cognition as a symbolic information processing system, a complex network where symbols are manipulated
to produce thoughts and decisions. Marvin Minsky [73] proposed a modular view with his Society of Mind, where
mental agents interact to create an overall cognitive experience. Building on this foundational understanding of cog-
nition, a diverse spectrum of paradigms has emerged [86], each offering unique perspectives on the intricacies and
subtleties of cognitive processes. Cognitive mimic analyses human information processing to be mimicked by intel-
ligent technologies [52]. Cognitive science is an interdisciplinary approach to understanding the mind that combines
several different levels of analysis [42, 111]. Derived from this field, cognitive heuristics have been identified, which
can be thought of as mental shortcuts or models inspired by the way the human brain works. Cognitive heuristics are
designed to facilitate the dissemination and interpretation of semantic data and associated data elements. Their design
is inspired by the way humans store and process semantic information in memory [77].

Cognition stands as the central pivot of the mental processes that enable us to interact with the world around us.
It is shaped by intentional interactions between individuals and their environment, enabling the realisation of specific
tasks and goals in a variety of contexts [8]. At a deeper level, it reflects our ability to acquire, process, store and
understand information. This ranges from the simple absorption of knowledge to a deep and nuanced understanding
of concepts [7]. The human brain, with its remarkable capacity to process an unlimited amount of information,
is the key player in these cognitive processes. It enables us to understand, interact and respond to stimuli in our
environment, demonstrating its complexity and flexibility [116]. This interaction with information is influenced by our
previous experiences, our acquired knowledge, both procedural and declarative [6, 50], and even extends to the way
other animals perceive and react to their environment [22]. Cognition is also a continuous exploration of knowledge,
involving reflection, personal experience and sensory interaction. It is the mechanism by which we make sense of our
world, encompassing everything from sensation and perception to more complex processes such as attention, learning,
memory and language [49]. Within the realm of Cognitive Factory [24], cognition is perceived as the capability of
interpreting data, learning, and making decisions [83, 99, 12].

In industrial contexts, as represented by our articles set, it seems that cognition is considered from many angles,
reflecting its multidimensional nature. In CCPS systems, cognition is largely conceptualised around interaction with
the environment and decision-making based on these interactions, as demonstrated by the work of [5] and [3]. This
perspective focuses on real-time analysis, learning and decision-making. On the other hand, CDTs tend to focus more
on how cognition relates to knowledge acquisition [47]. Interestingly, both CCPS and CDT integrate aspects related
to information processing, as shown by [116] and [51]. The discussion also refers to important figures in cognitive
psychology such as Neisser [81], recognizing the fundamental role of these ideas in understanding cognition within
technology. Table 4 summarises the different definitions of cognition that could be found in our analysis. Generally,
it is recognised as being an ability, involving processes qualified as ’mental’. We have grouped definitions according
to the specific objective authors attach to cognition. Definitions under Awareness focus on the awareness of the en-
vironment, exploited for decision-making. Knowledge acquisition and understanding focuses on how knowledge is
acquired, and finally Information processing relates to the processing of information or knowledge in general.
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Theme Definition CDT CCPS

Awareness Cognition can be defined as the integrative ability to perceive
and understand the environment and social context, to learn
from past actions, and to use this knowledge to reason, pre-
dict and optimize behaviors and decisions to achieve specific
goals. It encompasses the real-time analysis and intentional
awareness that informs problem-solving and work production.

[47, 51] [5, 3, 8]

Knowledge acquisition
and understanding

Cognition is the action or mental process by which we acquire
knowledge and understanding by mobilizing thought, experi-
ence and the senses.

[47] [7]

Information processing Cognition, in the context of information processing, can be
defined as the set of capacities and processes by which the hu-
man brain processes, understands and interacts with informa-
tion from its environment. This includes the transformation,
reduction, elaboration, storage, retrieval and use of sensory
data.

[81, 34,
79, 51,
113]

[116, 35]

Table 4: Comparative Definitions

In conclusion, cognition goes beyond mere theoretical concepts or isolated functions; it includes a wide range of
processes. In a modern context, particularly with the rise of Industry 4.0 [34, 79], cognition within industrial systems
(CCPS and CDT) has become essential for processing and analyzing vast volumes of data [35], offering solutions for
use cases such as real-time monitoring, process optimization and anomaly detection. Despite this statement, the use
of cognition too often relies on a common understanding without referring to established research and definition from
neurosciences or cognitive psychology. Without delving into the fundamental concept of cognition, many articles in
this field directly address topics such as CCPS or CDT, topics which will be examined in more detail in the following
sections. The following section presents the cognitive functions that support the integration of human cognition in
these systems.

3.2. Cognitive functions
This section concerns RQ2: Which cognitive functions are integrated into CPS and DT? Cognitive function refers

to mental processes involved in the acquisition of knowledge, manipulation of information, and reasoning [55]. These
functions include various domains such as perception, memory, learning, attention, reasoning, decision making,
problem-solving and language abilities [106]. There are several ways to conceptualize cognitive ability domains,
including classification by the general process involved, such as memory or attention [41]. Some important cognitive
skills include short-term memory, logic, processing speed, attention, and spatial recognition2. Classical models of
human cognition have been conceptualized by cognitive scientists within an information processing paradigm, which
is grounded by a computational metaphor that draws an analogy between mental operations with the functioning of a
computer [55]. When systems like CPS or DT implement cognitive functions, they become cognitive systems, which
has its own branch of research. Humans can already be qualified as cognitive systems, but machines or CPS/DT not
yet. Cognitive systems are designed to simulate the functioning of the human brain [3]. Particularly, they would
be “capable of human-like motivation, emotion, and personality, highly skilled and knowledgeable, and performing
human-like reasoning and learning”. More generally, human-like characteristics in machines are expected to facili-
tate human-machine communication and mutual understanding, where humans can more easily interpret and predict
machine behaviour. The similarities would allow humans and machines to socialize and establish a trust relation, thus
allowing collaboration and partnership.

Research on CCPS and DT are a first step towards transforming CPS and DT into cognitive systems. The literature
shows that cognitive functions can be implemented in CCPS and CDT to enable them to learn, reason, and make

2https://www.verywellmind.com/what-is-cognition-2794982
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decisions. However not necessarily the same functions have been considered in the articles. Figure 3 shows the
cognitive functions refered in the articles and their frequency of appearance for CCPS and CDT.

Figure 3: Comparison of cognitive functions in CDT and CCPS.

In the context of CCPS, reasoning [48, 7, 24, 27, 45] is essential for processing information, drawing conclusions
and making decisions based on logic and understanding. Attention and perception [48, 84, 7, 24, 27, 45] in these
systems is often focused on grouping and retrieving data, taking into account the limited processing capacity and large
amount of data from environmental inputs. Situational awareness [3] is also crucial, as it enables these systems to
adapt to environmental changes, ensuring optimum safety and adaptability. In the literature, other cognitive functions
such as learning [102, 48, 84, 15, 24, 27, 45], decision-making [48, 75, 84, 45], problem solving [48, 15, 45] and
memory [102, 48, 7, 15, 27, 45] have been represented to define a CCPS. In the context of CDT, cognitive functions
have been used by various authors [2, 1, 30, 34, 47, 76, 79, 28, 33, 44, 46, 51, 113, 118, 115]. Faruque et al. [34] have
distinguished and defined the cognitive functions of a Digital Twin as follows: Perception concerns the way in which
these systems transform data representations into useful information. Attention describes the process by which they
selectively focus on certain tasks or data, eliminating superfluous or distracting elements. Reasoning enables them to
draw conclusions in accordance with a starting point or perception, often based on a pre-existing memory or set of
assertions. Learning is the process by which they transform experience into reusable knowledge, enabling them to
adapt and evolve in response to new information. Problem-solving and decision-making are closely linked, enabling
the digital twin to find solutions to challenges or achieve specific goals. Finally, memory is a central element enabling
them to retain and recall information, be it memories of specific events or general knowledge about their environment.
The graph shows notable distinctions in the cognitive functions associated with CCPS and CDT systems. These
discrepancies stem from the divergent evolution of the two technologies; CCPS, which merge the digital and the
physical, may focus on real-time interaction with their environment, hence a priority for situational awareness. On the
other hand, CDT, digitally representing real processes, could be focused on simulation and prediction, emphasising
perception and reasoning. This divergence also reflects current research trends, the technological challenges specific
to each system, or the inherent complexity of each type of system. Improved cognitive abilities would enable better
integration of domain-specific knowledge and provide better clues for real-time decision-making [92]. In [2], the
authors highlight that cognition functions enable understanding: they make sense out of data under uncertainties,
generating knowledge that supports reliable decision-making or control. They formalise the cognition process as:
inserting new knowledge [25], learning new models, better situational understanding, and action planning. This
leads to challenges related to knowledge representation, acquisition and update, which are in fact classical ones in
knowledge engineering.

The two following sections detail the technologies that are exploited in papers to implement cognitive functions.
The second section highlights two specific enabling technologies: Cognitive Computing and Cognitive Architectures.
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3.3. Supporting technologies
This section addresses RQ3: What particular methods, strategies or models are used to implement cognition in

CPS and DT? The integration of cognition into industrial systems focuses on the intersection of AI and cognitive
technologies [33, 31]. Although the two are different, they are frequently used indiscriminately, as they both aim to
replicate human intelligence. Cognitive technologies focus on specific areas of human cognition, such as language
and vision, while AI includes a broader spectrum of technologies and applications. A simple way of distinguishing
these two technologies would be to consider cognitive technologies as a sub-category of the AI technology set [42].
In the field of cognitive Cyber-physical systems (CCPS), various AI techniques can be classified according to their
specialised functions. Analysis and reasoning capabilities are fundamental, with contextual and behavioural anal-
ysis enabling data to be understood in its situational context, and logical reasoning algorithms facilitating complex
decision-making. Added to this are predictive analyses, such as regression algorithms, which anticipate future sce-
narios, reflecting the ability of human cognition to anticipate [3]. The field of natural language processing (NLP)
contributes to the contextual dynamism of AI, with applications ranging from conversational agents, such as chatbots,
to machine translation, a linguistically challenging task [42]. As a new field derived from NLP, Large Language Mod-
els (LLM) certainly open new perspectives for cognitive systems, giving them the ability to extract knowledge directly
from human language, ultimately understanding it, to learn, and to interact with humans in their own language. By in-
corporating cognitive functions into CPS, LLMs can adapt dynamically to new situations, overcoming the limitations
of traditional AI method [42]. Computer vision, another fundamental element of AI, is particularly effective in the
field of facial recognition using Machine Learning (ML) and Deep Learning (DL) algorithms, enabling systems to in-
terpret and understand visual information in a way that closely resembles human perception [42]. A more specialised
but equally revolutionary technology is eye-tracking, which precisely measures and analyses eye activity, offering a
nuanced insight into how individuals interact visually with their environment [15].

On the other hand, CDT cover a complex set of technologies designed to mimic human cognitive processes. At
the forefront of text analysis is the field of NLP, which comprises a wide range of techniques for interpreting and
generating human language. Among the algorithms used by NLP and DL are Long Term Memory Networks (LSTM)
[70]; although very much present in NLP for their ability to process sequential data, LSTM networks are versatile
tools that are equally applicable to a whole range of other fields, including time series analysis. Within the sphere of
visual processing, computer vision is a distinct field, employing DL technologies such as the VGG network to master
image recognition and analysis [70]. The integration of these technologies illustrates the sector’s specialisation and
its essential role in understanding visual content. The work cited in [10] introduces an innovative approach with
Memory pool, an improved memory allocation system that secures the processing of user data. In addition, machine
learning methodologies are extending their influence to cognitive simulation [10, 29, 76, 79], as illustrated by graphical
learning, which optimises device functionality and simulates cognitive operations [51].

In synthesising the analysis, the integration of AI and cognitive technologies represents a synergistic approach
to mimicking human intelligence, combining the specificity of cognitive technologies in areas such as language and
vision with the broad technological spectrum of AI. This collaboration forms the bases of advances in CCPS and
CDT, which draw on a diverse set of techniques ranging from predictive analytics to natural language processing and
computer vision. These technologies not only improve our understanding of data in context, but also pave the way
for the simulation of complex cognitive functions, advancing the field towards more nuanced, human-like interactions
with digital systems.

3.4. Cognitive Computing and Cognitive Architectures
In this section, we address RQ4:What are the theoretical foundations of cognition used in CPS and DT, and how

do they help to implement the cognitive processes?
Cognitive computing and Cognitive architectures are enabling technologies for building cognitive systems. Cogni-

tive Computing was presented as the next generation AI by IBM, as “a computing paradigm where computing systems
are no more deterministic, following their programming rules, but rather probabilistic, by learning, reasoning and
adapting to a changing environment”, to enhance the perception, reasoning and decision-making capabilities of com-
puters [116]. It materialises the concept of embodied cognition3, which refers to embedding cognition capabilities in

3Grady Booch, presentation given to IBM ’s Academy of Technology, March 23, 2016.
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some (physical or virtual) entity with which humans can interact naturally. The focus is given on the ability of agents
to become cognitive systems, i.e., able to “observe, recognise and identify” and able to learn and improve themselves,
to negotiate in their interactions, and even capable of empathy [94]. The cognitive computing framework comprises
six interdependent cognitive components: comprehension, verification, planning, evaluation, attention and perception.
According to [116], each of these components can serve as a starting point or goal in a specific cognitive task. The
system chooses an interactive path, simple or complex, to reach the cognitive goal, depending on the information
needed to interact with the outside world.

The study of systems capable of learning and reasoning has led to the development of general cognitive archi-
tectures, which are essential for the design of entities capable of emulating the complexity of the human mind for
computational implementation. Universal theories of cognition, such as ACT-R [6], Soar [82], ICARUS, LIDA and
others reported in [106], illustrate this approach by attempting to integrate all cognitive processes and interactions.
These models draw on foundations in psychology, cognitive science and neuroscience to create systems that not only
simulate, but also aim to understand the intrinsic nature of human cognition. These architectures, which have been
around for some time, continue to be key references in cognitive research, underlining the importance of such inte-
grative approaches to progress in the understanding and reproduction of human cognition by machines. The ACT-R
theory, developed by Anderson, postulates that cognition emerges from the collection and adjustment of many small
pieces of knowledge. In practice, ACT-R serves as a framework for cognitive modelling and enables the integration
of complex models within distributed systems, thus improving the integration of these models into larger systems
[100, 18]. Newell, through his Unified Theories of Cognition [82], emphasised the integration of various cognitive
processes within a single unified system, suggesting that global understanding of cognition can be achieved by com-
bining its various components. He also developed the Soar architecture, a candidate for his theory, which uses a
bipartite memory system, with long-term and working memory. It works state by state, defining problem spaces and
operators, and uses a deadlock trial-and-error mechanism to generate new rules that prevent future obstacles [74, 18].
Next, ICARUS follows in the tradition of cited architectures, engaging in a specific way of representing knowledge,
inferring beliefs, executing and learning new knowledge [23]. Also included is the LIDA model, which is designed
to simulate the cognitive functions of an autonomous agent, covering processes like perception, attention, memory,
and decision-making, in alignment with theories of embodied and situated cognition [70]. It operates on a cycle of
perceiving sensory inputs, which then inform attention mechanisms, learning, and subsequent actions that affect the
environment. This involves multiple memory systems for storing information and mechanisms for learning and action
selection [38]. While the LIDA framework has been applied in practical software agents and neuroscience simulations,
it represents one of the many complex cognitive architectures that strive to closely mimic human cognition. Research
in this field is vast and ongoing, but architectures like LIDA are essential for creating more intelligent, interoperable
cognitive systems, which are discussed in the next section. More precisely, we address there our questions RQ5, RQ6
and RQ7, learning about cognitive CPS, DT and interoperability, as well as the special role of KRR.

4. Cognitive systems in CPE

Built on cognitive systems, our current technological environment is moving rapidly towards integrating cogni-
tive features. The discussions around Industry 4.0 emphasise the importance of taking care of large amounts of data
[35], which include improving decision-making processes, and enabling facilitating adaptation within cognitive man-
ufacturing [27]. Together, these elements work towards the realisation of a cognitive enterprise [31], which extends
beyond data analysis to the embodiment of cognition in technology. The increasing reference to terms such as CCPS,
and CDT in the glossary of Industry 4.0/5.0 highlight this ”cognitive” trajectory. We will explore three pivotal con-
cepts that respond to the concluding research questions: firstly, the definitions of CCPS and CDT, which are central to
understanding the cognitive underpinnings of these systems. Secondly, we’ll delve into the significance of cognitive
interoperability, a critical aspect for seamless integration across diverse cognitive frameworks. And finally, we’ll dis-
cuss how KRR supports cognition and facilitate this interoperability in such systems. In the following each of these
four topics is summarized according to the analysed literature, leaving the conclusions to draw from these summaries
and related discussion to Section 5.
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4.1. Cognitive Cyber-Physical Systems

This section addresses RQ5: How are cognitive CPS conceptualised, implemented, and applied within the context
of Industry 4.0? One of the primary technologies of Industry 4.0 is the CPS, which bridges the gap between virtual
domains and the real world. This is achieved through the fusion of networking, computation, and storage capabili-
ties, paving the way for interactive industrial settings and the emergence of Smart Factories [20]. In essence, CPS
are automated, distributed frameworks that seamlessly combine physical existence with communication systems and
computing platforms [108]. The CCPS concept is relatively new. According to [119], the task of cognition in CCPS
is to efficiently acquire the knowledge necessary for the system to achieve its objectives; this task is essential for
effective decision-making and control. Khargonekar [53] presents a vision for it, where it is defined as a CPS that
has cognitive functions and capabilities. Those can be programmed by design or be learned from interactions with
other CCPS and humans. Table 5 presents the CCPS definitions extracted from our study, organised according to their
specific application as identified in the publications. CCPS integrates multiple facets that combine intelligence with
physical processes, categorised into three distinct yet interrelated aspects. Adaptability emphasises the ability of the
CCPS to change and optimise its behaviour in response to changing environments and internal dynamics. Autonomous
agents refers to the ability of CCPS to self-monitor and solve problems. Finally, Awareness focuses on the system’s
perception of its environment and its own state. All CCPS systems have a detailed set of characteristics; however,
in the literature, studies are generally organised according to the specific characteristic they are examining, such as
adaptability, autonomy or awareness.

Characteristic Definition References

Autonomous agents A CCPS is an integrated, decentralised system that combines cogni-
tive capabilities with the structure of a CPS. It is designed to function
as an autonomous agent, capable of behaving and making decisions
independently, without human intervention.

[37, 84, 75, 85]

Adaptability CCPS is a CPS with cognitive abilities, capable of adapting their ac-
tions according to sensory information and uncertainty management.

[61]

Awareness CCPS is a system that holds an advanced understanding of its envi-
ronment and human interactions.

[5]

Table 5: Characterisation of CCPS in the Literature

According to the definitions found in the literature, CCPS are identified as entities capable of autonomy, adapt-
ability and environmental awareness. These systems are designed to operate without human intervention, dynamically
adjust to changes in their environment using their cognitive capabilities, and have a deep understanding of their op-
erational context. In [84] these systems are capable of detecting and analysing the environment, and then making
decisions based on the results of this analysis. This aspect of CCPS is examined in more detail in [75], where the
focus is on building mutual trust in human-robot collaborations. CCPS in [37] are designed to be holistic, decen-
tralised and cognitive. They enable cyber-physical system-of-systems (CP-SoS) to operate autonomously, without
human intervention. From another perspective, robots with cognitive capabilities are able to adapt their actions based
on sensory information and uncertainty management, as mentioned in [61]. More recently, [85] presents it as an
autonomous cooperative system of CPS with a cognitive architecture enabled by AI, which can interact deeply with a
physical system. Cognition here is a tool to move from controlled to autonomous systems that do not necessitate hu-
man intervention. It also enables the CCPS to have the ability to be aware of the environment and human interactions,
to learn from past actions and use them to make future decisions that benefit the network [5]. According to [119], the
task of cognition is to efficiently acquire the knowledge necessary for the system to achieve its objectives; this task
is essential for effective decision-making and control. In addition to these definitions, another way in which CCPS
has been presented is through the integration of cognitive radios with CPS, which trains cognitive abilities to obtain
information about transmission requirements or spectrum availability in order to improve performance [102]. This
section covers various methods of analysing cognition in CPS, our own analysis and definition based on this research
is discussed in section 5.
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4.2. Cognitive Digital Twin

This section deals with RQ6: How are cognitive DT conceptualised, implemented, and applied within the context
of Industry 4.0? A DT is a holistic digital and virtual engineering model of a product or more generally a system.
Different tools and technologies are available for developing high-fidelity virtual models [95]. Various methods are
used to create very detailed models [72], such as simulation, which predicts system behaviour [63], and emulation,
which mimics it in real-time [11]. Simulation provides a broad and fixed overview of the system, while emulation is a
dynamic, live replica that acts like the actual system [97]. The use of digital twins is often limited to an exact replica
of physical assets, without any cognitive capacity [44]. The concept of CDT was introduced to designate Digital
Twins that are extended with AI processes and functions giving them reasoning, decision-making and autonomous
acting capabilities. Our analysis revealed that ways of defining CDT vary from one research work to another. Table
6 presents a consolidated view of CDT definitions from our research. CDT integrate multiple facets of intelligence
and digital twinning, categorised into four distinct yet interrelated aspects. Semantic Modelling pertains to the CDT
capability to create detailed and interpretable models that mirror physical entities. Autonomous Agents emphasises the
self-sufficient operation of CDTs, enabling them to act independently. Real-Time Reasoning and Decision focuses on
the CDT ability to process data and make decisions swiftly, impacting immediate actions. Lastly, Adaptability refers
to the CDT capacity to evolve by learning from new data and adapting to changes. All CDTs include detailed features,
however, references are grouped based on the specific aspect each study focuses on.

Characteristic Definition References

Semantic modelling A DT with augmented semantic capabilities for identifying the
dynamics of virtual model evolution, promoting the understand-
ing of interrelationships between virtual models and enhancing the
decision-making based on DT

[51, 68, 65, 28]

Autonomous agents A DT that uses real-time reasoning and problem-solving skills to
interpret information and make autonomous decisions. This system
is adept at using its cognitive abilities to control processes, react to
unexpected events, and handle unknown situations independently,
without human intervention.

[10, 76, 113]

Real-Time Reasoning
and Decision

An advanced evolution of DT, with the ability to reason, interpret
and act in real time. It integrates enhanced communication, analyti-
cal and cognitive capabilities, enabling decision-making and process
control based on accurate observations, in-depth knowledge and ex-
perience.

[29, 115, 44, 76]

Adaptability A DT composed of interlinked digital models that reflect various
lifecycle stages of the physical counterpart, including all subsystems
and components. Notably, it has the distinctive ability to continu-
ously evolve in parallel with the physical system throughout its en-
tire life-cycle.

[1, 46, 118]

Table 6: Characterisation of CDT in the Literature

What we could observe in the state of the art is that semantic modelling seem crucial for understanding the evo-
lution of virtual models and improving decision-making, thus reflecting the importance of understandably in complex
system interactions [51, 68, 65, 28]. Next, the inclusion of autonomous agents indicates that CDTs are not static; they
are capable of real-time reasoning and autonomous problem solving, which is fundamental for applications where op-
erational independence is paramount [10, 76, 113]. Additionally, real-time reasoning and decision-making ability is
highlighted as an advanced attribute, indicating that CDTs operate with contextual awareness and immediate respon-
siveness [29, 115, 44, 76]. Ultimately, adaptability highlights the CDT ability to evolve in parallel with its physical
counterpart throughout the life cycle, suggesting intrinsic flexibility and continuous evolution [1, 46, 118]. Dividing
references according to the specific mode of application in each paper indicates that, although each CDT may possess
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all of these characteristics, studies often focus on one or more specific features in particular application contexts.
This reveals the breadth of application areas of CDTs and the diversity of research approaches, while confirming the
interdependence of different characteristics to realise the full potential of CDTs.

Building on this, cognition is understood as the ability to understand context, reason on top of existing infor-
mation, predict and optimize behaviour, and the CDT model integrates services supporting each of these. CDT is
presented as a necessary enabler for agile supply chains, fulfilling the need for synchronisation, knowledge sharing,
responsiveness, and optimisation across the potentially complex network of actors. Thanks to its cognitive features,
the CDT is expected to be able to detect different types of behaviours of the physical twin, for any combination of pre-
dictable and desired status, and predict impacts. These additional capabilities make CDT an autonomous intelligent
agent as defined in AI [93, 71] and Agent-Based Computing (ABC) [69] fields. The CDT model, or profile in [51],
is implemented as an ontological knowledge graph associated to status, behaviour, specifications, processes the DT is
part of as well as API and optimisation services supporting the cognition process. Another approach was considered
by Abburu et al. [1] which considered three progressive levels of cognitive augmentation for DT: Digital Twin, corre-
sponding to the classical digital replica where isolated models of the physical twinned are created; Hybrid DT, where
the models are interrelated allowing some prediction; and finally Cognitive DT, which has knowledge manipulation
and problem-solving capabilities allowing to deal with unknown situations. The cognitive capabilities of the CDT
include sensing, reasoning and self-learning, leading to continuous adaptation of structure and behaviour, and thus
proactively. This section covers various methods of analysing cognition in DT, our own analysis and definition based
on this research is discussed in section 5.

4.3. Interoperability and cognitive systems

This section addresses RQ7: How can interoperability within industrial environments be enhanced by cognition,
and is there a concept of cognitive interoperability? Interoperability aims to enable different systems or components
to work together seamlessly, sharing data and functionality without hindrance. The key to achieving this lies not only
in technical solutions, but also in understanding and aligning with human behaviors, communication patterns and
thought processes, hence the need for cognitive interoperability. The concept first appeared in the military sector [58],
with the development of a collaborative command and control portal. This initiative highlighted the importance of
aligning system operations with human cognitive capabilities to improve decision-making and operational efficiency.
Cognitive interoperability, as illustrated in the context of the C4ISR (command, control, communications, computers,
intelligence, surveillance and reconnaissance) model [14], focuses on the need for shared understanding and unity of
effort between team members. It focuses on the mental processes involved in decision-making, including perception,
awareness, understanding and the integration of beliefs and values. It refers to a unity of mindsets, confidence/trust
and mutual understanding based on shared education and values. It is understood as a human function and “a state of
mind that sets the foundation for cooperative and effective action ”4. In the nearby domain of crisis management, [62]
studies the socio-cognitive aspects of interoperability to support communication and joint decision-making among
multiple safety organisations. Those aspects concern the impact of human factors on all interoperability dimensions
with issues faced by humans in this particular context, which have to be taken into account to improve communication
and decision-making.

Referring to technical (IS) interoperability in e-government, Cognitive Interoperability in [40] is a part of organisa-
tional interoperability related to the “congruence in thought and perceptions” or “the human actors’ way of thinking”.
In Geographic Information Systems, [91] introduces Cognitive Semantic interoperability, arguing that semantic inter-
operability should build on the theories of cognitive semantics and human spatial cognition. This highlights that when
sharing knowledge, because the meaning of terms are in people’s heads, the mental models of both the sender and the
receiver have to be mapped for a complete understanding.

In the human-machine interaction research field, Semiotico-Cognitive Interoperability is presented in [13] as the
link AI seeks to establish between human and machine. The term semiotico-cognitive interoperability is used espe-
cially for man-machine communication, where an artificial agent “appears to behave in the same way as a human
agent would in the same situation and, in particular, that (to a predefined extent) some meanings seem to be shared
between the user and the agent”. This interoperability is limited here to virtual agent-to-agent communication using

4https://www.academia.edu/28803917/Cognitive Interoperability
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standardised languages and normalised means to translate between different knowledge representations, including on-
tologies. Cognitive interoperability is also referred at several levels in [60]: between the developer and the intelligent
system created, between human and machine intelligent agents within a hybrid system, and between different intel-
ligent systems. This interoperability enables effective collaboration, whether to work within a common knowledge
ontology, jointly extract new knowledge or cooperate between independently created systems.

While the term cognitive interoperability may not be extensively explored in literature, there are studies that
examine how cognitive systems can interact and operate coherently and efficiently. Jinzhi et al. [46] highlights the need
for data interoperability to take full advantage of CDT, highlighting initiatives such as Open Collaboration Throughout
the Lifecycle (OSLC) that facilitate data exchange and exploitation. Furthermore, Krueger [61] highlighted how the
organisation and clarification of information, both semantically and metrically, significantly facilitates the interaction
and understanding of data between different cognitive systems. On the other hand, Liu et al. [67] propose a two-
pronged strategy to increase interoperability between cognitive systems. They distinguish between a part devoted to
immediate perception and reactive, data-driven decisions, and a second oriented towards more in-depth, structured
cognitive reasoning. This methodology, while not explicitly using the term ”cognitive interoperability” certainly
captures its essence through the blending of real-time data perception and cognitive reasoning, enabling quick and
well-informed decisions. These studies provide insights into the possibilities of interoperability among advanced
cognitive systems, illustrating how such interoperability can be realized in industrial contexts.

The research discussed in this section allows us to conclude with insights into the realisation of cognitive coupling
between operating agents within a larger system, which will be discussed further in Section 5. Next, the following
section explores the use of KRR as an important and maybe essential tool for cognitive processes and interoperability
in CPSS and CDT.

4.4. KRR for cognitive systems and interoperability

This section addresses RQ8: What types of knowledge representation and reasoning approaches are commonly
used in CPS and DT to structure and manage relevant knowledge for specific cognitive tasks, and facilitate cognitive
interoperability? An important aspect of cognition lies in the elaboration of knowledge, which plays a key role in
analysing changes in processes, especially when it comes to identifying and interpreting unexpected variations [47].
Knowledge Representation and Reasoning, which belongs to the symbolic kind of AI, becomes a fundamental tool
for conceptualising cognition across diverse systems and for introducing cognitive interoperability between these
systems. In this context, ontologies and Knowledge Graphs (KG) emerge as key components of KRR, providing
effective means for structuring and manipulating information. Table 7 illustrates the studies that have implemented
these instruments in the context of CCPS and CDT.

CDT CCPS
KG [28, 29, 30, 46, 47, 51, 70, 76, 44, 10] [43, 67, 26]
Ontologies [28, 46, 51, 65, 76, 44, 29] [3, 43, 67, 22, 26]

Table 7: Number of references for each category and domain.

According to all the references in Table 7, ontologies enable seamless communication between systems and also
enrich semantic reasoning, indicating a move towards cognitive capabilities. At the same time, KGs help to analyse
and inform the decision-making processes of these systems. They evolve to become dynamic and underlie continuous
learning, thus contributing to autonomous reasoning capabilities. In [84], authors suggest that CCPSs rely on the
concept of decision DNA (DDNA) to store and share knowledge gained from decision-making experiences, thus
supporting the cognitive development of the system. On the DT side, CDTs can combine quantitative (such as ML
and data analysis) and qualitative (such as KG) data-driven approaches to refine results and improve processing and
reasoning capabilities [29]. We conclude here that KRR technologies support the emergence of cognitive systems
(CCPS and CDT) capable of transforming raw information into knowledge objects, and refining this knowledge in the
same way as the human process of acquiring and evaluating information.

KRR plays an important role in achieving cognitive interoperability. They integrate semantic web tools, notably
the Resource Description Framework (RDF), to create a common semantic base, facilitating uniform interpretation
and processing of information by different systems [28]. They ensure that systems can communicate fluidly, sharing
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and understanding data consistently. In addition, graphical representations, which combine spatial and semantic data,
enhance this communication by linking various forms of knowledge [61]. Furthermore, these articles [62, 60] explain
the need for systems integrating both social and cognitive capabilities for true socio-cognitive interoperability between
systems and their human users.

5. Analysis and Results

Following our systematic review of the literature on cognitive systems in the industrial context, we refine our
theoretical understanding here. Definitions have been developed for cognitive systems in general, as well as for
cognitive cyber-physical systems and cognitive digital twins.

5.1. Foundations

The limitations observed in the performance of CPS and CDT underline the need to get a better understanding of
the complex aspects of human cognition. This understanding is essential for efficiently integrating cognitive processes
into technological systems. In cognitive psychology, Neisser’s description of cognition as the transformation and use
of sensory data provides insight into the complexity of human cognitive processes [81]. Although other influential
models exist, such as Newell’s unified theories of cognition [82] and Minsky’s Society of Mind [73], Neisser’s process-
oriented approach offers a continuous and dynamic perspective, as it emphasises the fluidity and adaptability of human
cognition. Thus, cognition goes beyond mere data collection; it concerns the transformation, storage and effective
use of knowledge to understand, judge and decide. This view is central to cognitive science, which is a field that
blends many disciplines, emphasising the depth and complexity of cognition itself [42]. Each discipline brings a
unique method and perspective, enriching the overall analysis of cognitive processes or functions which are mental
processes involving the acquisition, processing, storage and use of knowledge. According to section 3.2, cognitive
functions include various abilities such as perception, attention, memory, problem-solving, reasoning, memory and
learning. We have seen that incorporating these functions into systems using AI and semantic modelling is a possible
approach to simulate human cognitive capabilities, but it also would require some specific structuring that cognitive
architectures could bring, to better humans in their way of thinking or processing information.

To improve cognitive functions in CCPS and CDT and make them closer from the ones of humans, we need
tools or technologies that enable machines to act in a way that seems ”intelligent” or that reproduces certain human
capabilities. Our analysis has highlighted the use of AI at different levels for supporting cognitive functions. The
two kinds of AI have been exploited: sub-symbolic with Natural Language Processing (NLP) [42], Deep Learning
(DL) and neural networks [70], and symbolic with KRR and ontologies. NLP and DL have seen rapid growth and
application, given its pattern recognition and predictive capabilities based on intensive data training. Among the
relevant technologies, NLP [42] and Large Language Models (LLMs) are highlighted for their potential to enrich
cognition in CCPS, even though no identified studies have yet implemented LLMs. Recurrent neural networks, such
as LSTMs, are recognized for their effectiveness in sequential data processing [70]. Computer vision and more
advanced DL technologies such as eye-tracking are also notable for their contribution to the interpretation of visual
data [15]. In this way, AI and cognitive technologies are essential for reproducing aspects of human intelligence such
as language, vision and the ability to anticipate.

Current research on hybrid AI together with our current study suggests that implementing cognitive functions
requires a seamless integration of symbolic AI and sub-symbolic AI [117]. Symbolic AI, with knowledge graphs
(Ontology) and KRR, contributes to deep knowledge modelling, which is crucial for interpreting complex data and
enabling autonomous decision-making. It structures and formalises knowledge, promoting semantic interoperabil-
ity and advanced reasoning, which is fundamental in cognitive systems for simulating higher-order cognitive func-
tions (Section 4.4). But for technological systems truly mimicking the cognitive capabilities of the human brain and
achieving human-like cognition, it requires the integration of hybrid AI approaches within cognitive architectures.
More specifically, architectures such as LIDA and SOAR do not just simulate intelligence; they strive to encompass
the whole of human cognition, facilitating a rapprochement with human reasoning and decision-making processes
[106, 38]. However, they are themselves complex systems, like the phenomena they model, and research in this field
is still ongoing after more than twenty-five years. But LIDA or other architctures are certainly interesting candidates
for giving cognitive things a “brain”, taking a step towards systems and cognitive interoperability. By integrating
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knowledge graphs and ontologies with NLP/DL into these cognitive architectures, we are linking the ability to learn
from data with the ability to reason in a complex, structured way, while processing information the same way human
do. This combination contributes to deep knowledge modelling, which is crucial for interpreting complex data and
enabling autonomous decision-making [114].

5.2. Definitions

Taking into account the results presented above, we have extracted a set of characteristics of cognitive systems.
Cognitive systems in industry are complex systems, as they are made up of numerous elements that can interact
with each other. So, first of all, the wide use of the word system in definitions found in the literature highlights the
necessity to come back to the roots by considering a systemic view. According to the fundamental work of Von
Bertalanffy [107], the founders of general systems theory (GST), a system is before all a complex set of interacting
elements, whose properties are richer than the sum of its parts.

Current research shows that cognitive systems are designed to mimic the human brain, enabling them to observe,
adapt and improve autonomously. The aim is not to replace humans, but to work in symbiotic collaboration with them,
based on the paradigm of human-computer symbiosis [105]. These systems are capable of simulating human aspects
such as motivation, emotion and personality, making their learning and actions comparable to those of human beings
[3]. Cognitive systems are at the core of technological interactions in the industrial field, enabling the execution
of complex tasks and the comprehension of varied information [7]. They are equipped with cognitive functions
that simulate human mental processes such as perception, memory, learning, attention, reasoning, decision-making
and problem-solving [55, 106]. With these functions, cognitive systems can process sensory information, learn and
reason in a structured way, simulating human cognition. This capacity for autonomous learning and adaptation is
crucial for meeting specific needs in complex environments. In conclusion, cognitive systems aim to establish a
close, symbiotic collaboration with humans, continually adapting and improving. They use AI with ontologies and
knowledge graphs to simulate the functioning of the human brain. Thus, we propose the following definition, which
integrates the capabilities of cognitive systems, while explicitly giving a systems perspective where cognitive systems
inherit properties from systems :

Definition 1. A cognitive system is a system that integrates cognitive functions inspired by the functioning of the
human brain, capable of learning, reasoning and decision-making. They can interact naturally with humans and
continuously improve through their ability to adapt. These systems process and understand complex information,
making it easier to solve a variety of problems and carry out complex tasks.

The Cognitive Cyber-Physical System (CCPS) is the next evolution of CPS. It adds a new dimension to tradi-
tional CPS, where it is given the ability to integrate and assimilate cognitive functions, either at the design stage
or through interactions with its environment. This integration results in autonomy, highlighting the system’s ability
to self-manage, learn from its environment and make decisions autonomously, aligning with human perspectives of
intelligence and reactivity [53]. A CCPS is characterized by its active engagement and adaptability to the environ-
ment, enabling it to perceive and interact independently with its context [84]. The design of such systems requires
the development of interfaces for environmental interaction, enabling a dynamic exchange of information, facilitating
decision-making and enhancing human-machine interactions [75]. Thus, we propose a definition for CCPS that starts
with the foundational concept of a CPS and enhances it with the capabilities of a cognitive system:

Definition 2. A CCPS is a CPS and a cognitive system. As such it as cognitive functions, with abilities enabling not
only to interact with its environment, but also to understand and learn from it, to make autonomous decisions and
adapt dynamically to the context.

As for CCPS, the Cognitive Digital Twin is the evolution of the DT where it is given cognitive functions. Our
state of the art analysis highlighted key features like adaptability [1, 29, 113], structured intelligence [44], semantic
modelling [68, 65], autonomy [118], and the symbiotic relationship with the physical system [118]. Globally, a CDT
possesses properties of a cognitive system, completed with DT-specific ones. This forms a reference framework for a
definition that not only captures the digital replication capacity of a cognitive system but also its dynamic evolution
and autonomous interaction with its environment. We propose the following definition for CDT:
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Definition 3. A CDT is a DT and a cognitive system. As a DT it emulates a physical system that can be or not itself
cognitive. As a cognitive system it possesses cognitive functions, bringing it in particular the ability to semantically
model, process and interpret information autonomously and actively learning from its interactions .

These definitions of CCPS and CDT, extended with ideas from cognitive systems, establish a foundation for cog-
nitive interoperability. However, implementing this within a CPE is not trivial. As part of our systematic literature
review, we highlight the concept of cognitive interoperability, historically associated with human dynamics and partic-
ularly underlined in the military sector [58] and emergency management [62]. This concept highlights the need for a
shared mental framework that goes beyond the simple coordination of information and processes. Semiotic-cognitive
interoperability explores the possibility of mutual understanding between humans and [13] systems. In our view, this
development illustrates the need for a deeper understanding of cognition for effective collaboration, based on shared
meanings and not just information sharing. Until now, cognitive interoperability has been little explored and exploited
in human-machine interactions [39], and has not been widely implemented in the field.

6. Conclusion

The 5th industrial revolution starting now should be characterised in particular by the integration of CCPS and
CDT, underscoring the fact that artificial systems are no longer just tools; they are collaborators. As enterprises evolve
into CPE, the infusion of cognition capabilities into industrial systems becomes not just desirable, but imperative. In
this paradigm, the role of cognitive functions becomes essential. In this context, cognitive interoperability becomes
an important concern. But handling it will redefine human-machine collaboration, decision-making and knowledge
sharing.

In this article, based on an extensive analysis of the literature, we have presented the foundations of cognition
for its implementation in cognitive systems such as CCPS and CDT, and the concept of cognitive interoperability in
CPE. We highlighted that cognition goes beyond simple data collection, also covering the transformation and use of
knowledge for understanding, judgement and autonomous decision-making. We have examined the basic mental func-
tions that make up cognition. These are those functions - perception, attention, memory, problem-solving, reasoning,
decision-making and learning - that hybrid AI combining data-driven ML/DL and NLP approaches with knowledge
representation and reasoning aspire to simulate. We have highlighted that despite its rapid progress and ability to
identify patterns, sub-symbolic AI cannot yet match all cognitive abilities, especially when it comes to understanding
semantic complexity and the structured representation of knowledge, which requires symbolic approaches. KRRs
bring a level of accuracy and understanding to cognitive systems that goes beyond what is possible with ML alone.
Finally, we have also pointed out that cognitive architectures, including complex architectures such as ACT-R, LIDA
and SOAR, represent a significant advance when integrated with systems capable of managing and using knowledge.
As systems dedicated to implement the human-way of thinking, cognitive architectures could provide a fundamental
basis for the development of cognitive systems.

Despite the advances, challenges remain. Current research coupling CCPS with CDT are still limited in that they
focus on the twinned CPS only, without considering enough interactions with its environment. Integrating multiple
tools into a CDT could be a source of complexity, and distinguishing between static and dynamic features could pose
synchronization problems. The complex design and integration required by their semantic capabilities is a challenge,
and real-time data management could put a strain on data processing and decision-making systems. In CCPS, one
of the main challenges is to establish a framework of solid trust and mutual understanding between humans and
these systems. In addition, their distributed and global design can lead to complexities in coordinating the various
components, particularly in dynamic environments. Finally, cognitive interoperability, aimed at facilitating coopera-
tion between heterogeneous systems at the level of cognitive exchanges, remains a major challenge to overcome for
successful human-systems integration.

Progress has been made with Cognitive CPS and Cognitive DT, but there is much more to achieve to actually move
from systems integrating AI components to systems, showing then cognitive behaviour. The key to success is inte-
grating the principles of cognition with the practical applications and systems powered by AI. to enable real teamwork
between humans and machines. As cognitive systems learn and adapt, ensuring they remain stable and predictable
is essential. We need to take a comprehensive approach that covers everything from the software’s design to its
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security and how people interact with it. Although the concept of machines working seamlessly with humans is well-
recognised, making this a reality across different areas still requires some work. The social-cognitive interoperability
approach highlights the importance of social factors in the implementation of cognition within systems. Therefore,
we need to pay close attention to how cognitive and social elements work together in cyber-physical systems to foster
cognitive interoperability, where there is great potential for cooperation that we have not yet fully exploited. And
finally, to really see if we can emulate human cognition through Hybrid AI.

Acknowledgement

This work has been partially supported by the ANR French National Research Agency and the FNR Luxem-
burg National Research Fund, project AI4C2PS (AI for Cognitive Cyber-Physical Systems interoperability) (IN-
TER/ANR/22/17164924/AI4C2PS), 2023-2026.

References

[1] Abburu, S., Berre, A.-J., Jacoby, M., Roman, D., Stojanovic, L., and Stojanovic, N. (2020b). COGNITWIN – hybrid and cognitive digital
twins for the process industry. IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC).
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as an industry 5.0 design challenge. Sustainability, 14:2773.
[9] Arnold, C., Kiel, D., and Voigt, K.-I. (2016). How industry 4.0 changes business models in different manufacturing industries [rewarded with

ISPIM best student paper award].
[10] Asadi, A. R. (2022). Cognitive ledger project: Towards building personal digital twins through cognitive blockchain. 2021 2nd International

Informatics and Software Engineering Conference (IISEC).
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[66] Liu, L. and Özsu, M. T. (2009). Encyclopedia of database systems, volume 6. Springer New York.
[67] Liu, M., Li, X., Li, J., Liu, Y., Zhou, B., and Bao, J. (2022). A knowledge graph-based data representation approach for IIoT-enabled

cognitive manufacturing. Advanced Engineering Informatics, 51.
[68] Lu, J., Zheng, X., Gharaei, A., Kalaboukas, K., and Kiritsis, D. (2020). Cognitive twins for supporting decision-makings of internet of things

systems. pages 105–115.
[69] Luck, M., McBurney, P., and Preist, C. (2004). A manifesto for agent technology: Towards next generation computing. Autonomous Agents

and Multi-Agent Systems, 9(3):203–252.
[70] Lv, J., Li, X., Sun, Y., Zheng, Y., and Bao, J. (2023). A bio-inspired LIDA cognitive-based digital twin architecture for unmanned maintenance

of machine tools. 80.
[71] Maes, P. (1995). Artificial life meets entertainment: lifelike autonomous agents. Communications of the ACM, 38(11):108–114.
[72] McGregor, I. (2002). Equipment interface: the relationship between simulation and emulation. Pages: 1688.
[73] Minsky, M. (1988). Society of mind. Simon and Schuster.
[74] Mittal, S. and Douglass, S. A. (2011). Net-centric ACT-r-based cognitive architecture with DEVS unified process. In Wainer, G., Him-

melspach, J., Traore, M., and Heikel, R., editors, THEORY OF MODELING & SIMULATION: DEVS INTEGRATIVE M&{S} SYMPOSIUM
2011 (TMS-DEVS 2011) - 2011 SPRING SIMULATION, volume 43, pages 34–44. Soc Model & Simulat.

[75] Mizanoor Rahman, S. M. (2019). Cognitive cyber-physical system (c-CPS) for human-robot collaborative manufacturing. In 2019 14th
Annual Conference System of Systems Engineering (SoSE), pages 125–130.

[76] Mokhtari, K. E., Panushev, I., and McArthur, J. J. (2022). Development of a cognitive digital twin for building management and operations.
Frontiers in Built Environment, 8.

[77] Mordacchini, M., Valerio, L., Conti, M., and Passarella, A. (2016). Design and evaluation of a cognitive approach for disseminating semantic
knowledge and content in opportunistic networks. Computer Communications, 81:12–30.

[78] Morel, G., Panetto, H., Mayer, F., and Auzelle, J.-P. (2007). System of enterprise-systems integration issues: an engineering perspective. In
IFAC Conference on Cost Effective Automation in Networked Product Development and Manufacturing, IFAC-CEA’07, page CDROM. Elsevier.

[79] Mortlock, T., Muthirayan, D., Yu, S.-Y., Khargonekar, P. P., and Faruque, M. A. A. (2022). Graph learning for cognitive digital twins in
manufacturing systems. IEEE Transactions on Emerging Topics in Computing, 10(1):34–45.

[80] Naudet, Y., Panetto, H., and Yilma, B. A. (2023). Towards cognitive interoperability in cyber-physical enterprises. In 22nd IFAC World
Congress, IFAC 2023, number 755-766.

[81] Neisser, U. (1967). Cognitive psychology. New York, Appleton-Century-Crofts.
[82] Newell, A. (1990). Unified theories of cognition. Cambridge, Mass. : Harvard University Press.
[83] Niu, L., Lu, J., and Zhang, G. (2009). Cognition-driven decision support for business intelligence. Models, Techniques, Systems and

Applications. Studies in Computational Intelligence, Springer, Berlin, pages 4–5.
[84] Oliveira, C. S. D., Sanin, C., and Szczerbicki, E. (2019). Visual content representation and retrieval for cognitive cyber physical systems. In

Procedia Computer Science, volume 159, pages 2249–2257.
[85] Oliveira, L. M. C., Dias, R., Rebello, C. M., Martins, M. A. F., Rodrigues, A. E., Ribeiro, A. M., and Nogueira, I. B. R. (2021). Artificial

intelligence and cyber-physical systems: A review and perspectives for the future in the chemical industry. AI, 2(3):429–443. Number: 3
Publisher: Multidisciplinary Digital Publishing Institute.

[86] Pacaux-Lemoine, M.-P., Berdal, Q., Guérin, C., Rauffet, P., Chauvin, C., and Trentesaux, D. (2022). Designing human–system cooperation
in industry 4.0 with cognitive work analysis: a first evaluation. Cognition, Technology & Work, 24(1):93–111.

[87] Panetto, H. (2007). Towards a classification framework for interoperability of enterprise applications. International Journal of Computer
Integrated Manufacturing, 20(8):727–740. Publisher: Taylor & Francis eprint: https://doi.org/10.1080/09511920600996419.

[88] Panetto, H., Iung, B., Ivanov, D., Weichhart, G., and Wang, X. (2019). Challenges for the cyber-physical manufacturing enterprises of the
future. 47:200–213.

[89] Panetto, H., Zdravkovic, M., Jardim-Goncalves, R., Romero, D., Cecil, J., and Mezgár, I. (2016). New perspectives for the future interoperable
enterprise systems. Computers in Industry, 79:47–63.

[90] Pimplikar, R., Mukherjee, K., Parija, G., Vishwakarma, H., Narayanam, R., Ahuja, S., Vallam, R. D., Chaudhuri, R., and Mondal, J. (2017).

22



Cogniculture: Towards a better human-machine co-evolution. ArXiv.
[91] Raubal, M. (2005). Mappings for cognitive semantic interoperability. In Proc. 8th AGILE Conference on Geographic Information Science

(AGILE), pages 291–296.
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