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Abstract  50 

Anaphylaxis is a severe, systemic hypersensitivity reaction that is rapid in onset and 51 

characterized by life-threatening airway, breathing, and/or circulatory problems, and that is 52 

usually associated with skin and mucosal changes. Because it can be triggered in some people 53 

by minute amounts of antigen (e.g. certain foods or single insect stings), anaphylaxis can be 54 

considered the most aberrant example of an imbalance between the cost and benefit of an 55 

immune response. This review will describe current understanding of the 56 

immunopathogenesis and pathophysiology of anaphylaxis, focusing on the roles of IgE and 57 

IgG antibodies, immune effector cells, and mediators thought to contribute to examples of the 58 

disorder. Evidence from studies of anaphylaxis in humans will be discussed, as well as 59 

insights gained from analyses of animal models, including mice genetically deficient in the 60 

antibodies, antibody receptors, effector cells, or mediators implicated in anaphylaxis, and 61 

mice which have been “humanized” for some of these elements. We also will review possible 62 

host factors which may influence the occurrence or severity of anaphylaxis. Finally, we will 63 

speculate about anaphylaxis from an evolutionary perspective, and argue that, in the context 64 

of severe envenomation by arthropods or reptiles, anaphylaxis may even provide a survival 65 

advantage. 66 

  67 
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Introduction 68 

The recent “International Consensus on (ICON) Anaphylaxis” described anaphylaxis as “a serious, 69 

generalized or systemic, allergic or hypersensitivity reaction that can be life-threatening or fatal”.1 70 

This definition is intentionally “generic”, in that it doesn’t mention any of the specific 71 

immune elements that might be involved in particular instances of the disorder, as these may 72 

vary depending on individual circumstances. In this review, we will describe the key immune 73 

elements, such as antibody isotypes, effector cells, and biological mediators, which can 74 

contribute to development and pathophysiological manifestations of anaphylaxis. We in 75 

particular will note the extent of evidence implicating these immune components in 76 

anaphylaxis in humans versus that induced in mouse models of the disorder, focusing 77 

especially on forms of anaphylaxis induced by the reactions of allergens with antigen-specific 78 

antibodies. We will not extensively review forms of anaphylaxis induced by the antibody-79 

independent activation of effector cells such as mast cells and basophils, topics which have 80 

been reviewed elsewhere.2, 3 81 

 82 

  83 
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Clinical Anaphylaxis 84 

The clinical definition, classification, nomenclature, and treatment of anaphylaxis have been 85 

points of controversy, varying among different medical subspecialties and in different 86 

countries, and it became clear that an important goal for the field would be to achieve a true 87 

international consensus on these important points.4 Subsequently, multinational, 88 

multidisciplinary symposia were convened to agree on the definition of anaphylaxis, the 89 

clinical criteria for its diagnosis, and its management5. Participants agreed on a description of 90 

anaphylaxis as “a serious allergic reaction that is rapid in onset and may cause death”, as well 91 

as on three sets of clinical criteria to diagnose anaphylaxis.5 These criteria were re-affirmed in 92 

the recent “International Consensus on (ICON) Anaphylaxis”1 and are more extensively 93 

reviewed elsewhere in this issue (Castells et al.6). A minority of patients exhibit biphasic 94 

allergic reactions, in which signs and symptoms of anaphylaxis recur hours after the early 95 

phase of the reaction has waned, and in some patients late phase reactions occur without 96 

initial hypotension or airway obstruction.7, 8 In addition to the biphasic reactions observed in 97 

some patients with anaphylaxis induced by a variety of causes, patients who have IgE reactive 98 

with the oligosaccharide galactose-alpha-1,3-galactose (“alpha-gal”), which is present in 99 

mammalian meat and in some therapeutic antibodies, can exhibit anaphylaxis after a delay of 100 

several hours during which no signs or symptoms are apparent.9  101 

 Although there is broad consensus on many aspects of the treatment of anaphylaxis10-102 

12 (see also Castells et al.6), such recommendations are based largely on observational studies, 103 

extrapolation from retrospective case reviews, and a few clinical trials.10, 11 Injectable 104 

epinephrine is universally agreed upon as the first line therapy for anaphylaxis,10-12 and may 105 

counteract many pathophysiological changes in anaphylaxis by acting through: alpha-1 106 

adrenergic receptors to induce vasoconstriction, which prevents or diminishes tissue/airway 107 

edema, hypotension and distributive shock; beta-1 adrenergic receptors to increase heart rate 108 
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and cardiac contractility; and beta-2 adrenergic receptors to dilate airways.11 In addition, 109 

epinephrine’s action on beta-2 adrenergic receptors may potentially block further release of 110 

mediators (histamine and eicosanoids) by mast cells and perhaps other effector cells.13, 14 111 

Other therapies should be considered second line – and not a substitute for 112 

epinephrine. Guidelines generally agree that patients should be placed in a supine position and 113 

given crystalloid to maintain perfusion, and oxygen.10, 12 H1 and H2 antihistamines may be 114 

helpful in treating cutaneous and upper respiratory signs and symptoms, and corticosteroids 115 

may help to prevent biphasic reactions, but neither prevent nor treat airway obstruction or 116 

circulatory collapse and therefore can’t be considered as alternatives to epinephrine.10-12 117 

Development of novel therapies for anaphylaxis is likely to be guided mainly by limited data 118 

from humans and by observations made using animal models.  119 

 120 

Immunological mechanisms of anaphylaxis 121 

Only limited data on immunological mechanisms of anaphylaxis from human subjects 122 

are available due to the life-threatening nature of anaphylaxis and obvious ethical concerns. 123 

Human studies of anaphylaxis have included inducing anaphylaxis in volunteers (most often 124 

through hymenoptera sting challenge) and collecting samples from patients presenting for 125 

emergency management of anaphylaxis. Data obtained in such studies, as well as key findings 126 

obtained using mouse models of anaphylaxis, are summarized below, in Figure 1 and in 127 

Table 1. The major pathophysiological changes observed during anaphylaxis, and some of 128 

the mediators that are thought to contribute to them, are shown in Figure 2. 129 

 130 

Effector molecules and receptors 131 

 132 

IgE-dependent anaphylaxis  133 
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IgE antibodies undeniably can play an important role in conferring immunological 134 

specificity to effector cell activation in anaphylaxis and other allergic diseases.15-18 IgE is by 135 

far the isotype found at the lowest concentrations in the circulation (50-200 ng/ml total 136 

circulating IgE in healthy individuals vs. ~10 mg/ml for IgG);15 however, IgE can be found at 137 

much higher levels in individuals with allergic diseases.16, 19 IgE binds to the high affinity 138 

receptor, FcεRI, on the surface of blood basophils and tissue resident mast cells,20 and (in 139 

humans to a greater extent than in mice) other cell types, including neutrophils, eosinophils, 140 

monocytes and dendritic cells, and platelets.20 Upon exposure to a bi- or multi-valent allergen, 141 

crosslinking of FcεRI-bound IgE induces activation of mast cells and basophils, and the 142 

immediate release of preformed mediators such as histamine and various proteases, as well as 143 

de novo synthesis of many inflammatory mediators such as certain leukotrienes, 144 

prostaglandins, and cytokines.16, 20 The importance of that reaction was demonstrated 50 years 145 

ago, when different groups realized that purified IgE was capable of transferring skin 146 

reactivity from a sensitized human subjects to naive hosts.17, 21-23 Similarly, transfer of 147 

antigen-specific IgE into naïve mice sensitizes the animals to develop anaphylaxis upon 148 

subsequent exposure to that allergen.24, 25 Such IgE-mediated anaphylaxis is abrogated in 149 

mice lacking the high affinity IgE receptor FcεRI25, as well as in mast cell-deficient mice,26-28 150 

highlighting the importance of IgE-mediated mast cell activation in such models of 151 

anaphylaxis. 152 

Ever since the discovery that IgE can transfer allergen reactivity, the development of 153 

antigen-specific IgE antibodies has been regarded as a key risk factor for the development of 154 

allergy and/or anaphylaxis upon subsequent antigen exposure. Indeed, quantification of 155 

specific IgE levels are used as part of the diagnostic evaluation of those thought to have 156 

allergic diseases, and is used to identify potential triggers of anaphylaxis in patients with a 157 
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history of anaphylaxis.29 Several trials have concluded that the use of the anti-IgE therapeutic 158 

antibody omalizumab as adjunctive treatment during food or venom immunotherapies can 159 

decrease the risks of severe allergic reactions, including anaphylaxis, and in some but not all 160 

trials also has been reported to improve the rapidity and efficacy of immunotherapy in 161 

achieving desensitization.30-34 In addition, limited clinical data also suggest that omalizumab 162 

may prevent spontaneous episodes of anaphylaxis in patients with systemic mastocytosis, a 163 

disease characterized by marked increases in mast cell numbers and activity35 (also see the 164 

review by Akin et al.36 in this issue of JACI).  165 

Clearly, however, IgE levels alone do not explain an individual’s susceptibility to 166 

anaphylaxis. Some patients can experience near fatal anaphylaxis despite having low or 167 

undetectable levels of circulating allergen-specific IgE.37 Conversely, allergen-specific IgE 168 

can be detected in the plasma of many subjects who do not develop clinical symptoms when 169 

exposed to that allergen.38 This is particularly true for hymenoptera venom, where the vast 170 

majority (~80%) of people with IgE antibodies specific for hymenoptera venoms have no 171 

history of systemic reactions to such venoms.39-42 Therefore, the presence of antigen-specific 172 

IgE antibodies, taken in isolation, does not indicate that the person necessarily will exhibit 173 

any, let alone severe, clinical reactivity to the recognized antigens.43-49  174 

 175 

IgE-independent anaphylaxis 176 

The fact that some patients experience anaphylaxis despite having undetectable levels of 177 

circulating allergen-specific IgE37 suggests the existence of IgE-independent pathways of 178 

anaphylaxis. However, it should be noted that a lack of detection of free IgE does not mean 179 

that such patients don’t have enough FcεRI-bound IgE to experience IgE-mediated 180 

anaphylaxis. More definitive evidence for IgE-independent anaphylaxis has been obtained 181 

using mouse models (Table 1).  182 
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 183 

Role of IgG and FcγRs   184 

Besides IgE, we now know that mouse IgG also can induce passive systemic 185 

anaphylaxis (PSA) reactions, with physiological manifestations similar to those seen in IgE-186 

dependent PSA (mainly hypothermia, vasodilatation and cardiopulmonary changes).50-60 187 

Whether IgG antibodies also mediate anaphylaxis in humans still remains to be proven, and is 188 

the topic of a recent review.2 As demonstrated in mice, IgG-mediated anaphylaxis typically 189 

requires a much larger dose of antigen than does IgE-mediated anaphylaxis,61 and systemic 190 

anaphylaxis also requires systemic absorption of ingested antigen.62 Such conditions could be 191 

encountered in the case of anaphylaxis occurring in response to infusion of large quantities of 192 

a drug or a therapeutic monoclonal antibody (mAb)2 (Table 1).  193 

 194 

Role of complement  195 

Activation of the complement cascade occurs in response to many stimuli, and leads to 196 

generation of small polypeptides: C3a, C4a and C5a, also named anaphylatoxins, which are 197 

potent inflammatory mediators.63 Multiple lines of evidence suggest that anaphylatoxins 198 

might be involved in anaphylaxis. Depletion of complement levels and production of C3a and 199 

C5a is observed in human anaphylaxis.64, 65 Anaphylatoxins can activate various myeloid 200 

cells, including mast cells and basophils.63 Injection of low doses of C3a, C4a or C5a into the 201 

skin of healthy volunteers induces immediate wheal and flare reactions.66-69 In addition, one 202 

study showed that blood levels of C3a, C4a and C5a correlated with the severity of 203 

anaphylaxis in humans.65 Several transgenic mouse models have been used to study the 204 

importance of the complement pathway in anaphylaxis. Data obtained using these transgenic 205 

models are reviewed in Table 1, and suggest that, in mice, the effect of complement 206 
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components on anaphylaxis may be in most cases largely redundant with that of other 207 

mediators and may depend on the specific model used.  208 

 209 

Potential effector cells of anaphylaxis 210 

 211 

Mast cells 212 

Mast cells are viewed as key players in IgE-dependent allergies and anaphylaxis.16, 70 213 

Mast cells ordinarily express large numbers of the high affinity IgE receptor, FcεRI. During 214 

IgE-dependent immune responses, the antigen-dependent cross-linking of antigen-specific 215 

IgE bound to FcεRI induces the aggregation of FcεRI, promoting the activation of 216 

downstream signaling events that lead to the secretion of several biologically active products 217 

thought to be implicated in allergic reactions, such as histamine and various cysteinyl 218 

leukotrienes (Cys-LTs).16, 71-73 The molecular mechanisms of such IgE-dependent stimulation 219 

of mast cells have been extensively reviewed.16, 71, 73-75 There is compelling evidence of 220 

activation of mast cells during acute anaphylaxis. Although histamine detection can be used 221 

to diagnose anaphylaxis (see Histamine, below), detection of histamine in clinical blood 222 

specimens is difficult due to its extremely short half-life, and histamine isn’t a mast cell-223 

specific product, since it can also be released by other cells, including basophils76 and 224 

neutrophils.77, 78 Tryptase is much more stable than histamine, and is considered to be a 225 

largely mast cell-derived product.79 Mature β-tryptase is stored in mast cell granules and 226 

released upon activation, such as in anaphylaxis, whereas α- and β- protryptases are secreted 227 

constitutively by mast cells and therefore increased blood levels may indicate increased mast 228 

cell burden rather than anaphylaxis.79  Elevated levels of tryptase have been detected during 229 

acute anaphylaxis in humans.65, 79-82 However, the roles of tryptase or other mast cell-derived 230 
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proteases in anaphylaxis remain unknown. Moreover, in some patients with anaphylaxis, such 231 

as children with food allergen-induced anaphylaxis, elevated blood levels of tryptase have not 232 

been detected.83 Additional evidence for a role of mast cells in anaphylaxis comes from the 233 

observation that patients suffering from mastocytosis, a disease characterized by the presence 234 

of high numbers of mast cells in various organs,84 have a high occurrence of anaphylaxis.85 In 235 

children with mastocytosis, increased serum tryptase levels, used as an indicator of mast cell 236 

burden, is a risk factor for anaphylaxis and for the severity of anaphylaxis episodes.86, 87  237 

Studies using various strains of mast cell-deficient mice also confirmed the key role of 238 

mast cells in IgE-mediated anaphylaxis.26-28, 58, 88 Several reports now demonstrate that mast 239 

cell-deficient mice also have reduced peanut-induced anaphylaxis in active systemic 240 

anaphylaxis (ASA) models.89-93 However, the role of mast cells in ASA models using other 241 

antigens/allergens is more controversial (summarized in Table 1). Therefore, it is likely that 242 

mast cells play either dominant or largely redundant roles in anaphylaxis, and that the mast 243 

cells’ role can be enhanced - or masked - depending on the exact model, adjuvant and allergen 244 

used. 245 

 246 

Basophils  247 

Human basophils also express high levels of the high affinity IgE receptor FcεRI,94 and 248 

express the activating IgG receptor FcγRIIA and the inhibitory IgG receptor FcγRIIB.95 249 

Several lines of evidence suggest that basophils participate in anaphylaxis.76 For example, 250 

IgE-dependent activation of human basophils is associated with elevations in the levels of 251 

certain basophil cell surface markers, such as CD203c or CD63, and this forms the basis of 252 

“basophil activation tests” which can be used to diagnose or confirm allergen sensitization, 253 

and to monitor the effects of efforts to treat these conditions with immunotherapy.96-99 254 

However, it is difficult to ascertain how important a contribution basophils make to the 255 
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pathology of anaphylaxis in humans, given the concomitant mast cell activation that occurs in 256 

this setting. Even in mice, the role of basophils in anaphylaxis is unsettled (Table 1).  257 

 258 

Monocytes/macrophages  259 

Monocytes and macrophages express high levels of activating FcγRs,100 and can also 260 

respond to anaphylatoxins.101 Studies in mice have shown that depletion of 261 

monocytes/macrophages using clodronate liposomes can reduce anaphylaxis in both IgG-262 

mediated passive models and active models52, 89, 92, 102, 103 (Table 1). These data suggest that 263 

monocytes/macrophages might play an important role in anaphylaxis. However, to the best of 264 

our knowledge, the extent to which monocytes/macrophages can contribute to anaphylaxis in 265 

humans has not yet been determined. 266 

 267 

Neutrophils  268 

The potential functions of neutrophils in anaphylaxis have been recently reviewed in 269 

detail.104 Human and mouse neutrophils express several activating FcγRs,104 can produce 270 

histamine,77, 78 and can release platelet-activating factor (PAF; please see below for details on 271 

the role of PAF in anaphylaxis) in response to stimulation with immune complexes in vitro.53 272 

Moreover, human neutrophils reportedly can express FcεRI, particularly in some patients with 273 

asthma.105 The major enzyme stored in neutrophils is myeloperoxidase (MPO). A recent 274 

report shows that circulating MPO levels are increased in patients with anaphylaxis as 275 

compared to healthy donors.106 Consistent with this, elevated MPO activity can also be 276 

detected as soon as two minutes after antigen challenge in an active mouse model of 277 

anaphylaxis.53 However, it should be noted that these results do not provide definitive proof 278 

of neutrophil activation in anaphylaxis, since MPO could also be potentially released by other 279 
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cell populations, including macrophages.107 Reduced expression of the activating IgG 280 

receptors FcγRIII and FcγRIV on mouse neutrophils occurs after IgG-mediated PSA, which 281 

suggest more definitely that neutrophils could be directly activated by IgG immune 282 

complexes during anaphylaxis.52, 55 Antibody-mediated neutrophil depletion can reduce 283 

anaphylaxis in IgG-mediated PSA52, 53, 56 and mast cell-independent ASA models.53, 103 284 

However, neutrophil-depleting antibodies had no effect in a mast cell-dependent ASA model 285 

induced without artificial adjuvants.103 This suggests that neutrophils may be particularly 286 

prominent in ASA models induced with adjuvants and that such models may not require any 287 

non-redundant contributions of mast cells (Table 1). 288 

 289 

Platelets  290 

Anaphylaxis in humans is associated with platelet activation,108 presumably in response 291 

to PAF and/or other mechanisms, and activated platelets can release mediators, such as 292 

platelet factor 4 (PF4) and serotonin,108 which might contribute to the pathophysiology of 293 

anaphylaxis. Moreover, human (but not mouse) platelets can express FcεRI, FcεRII and 294 

FcγRIIA,95, 109, 110 and platelets can be activated ex vivo following incubation with serum from 295 

allergic patients and subsequent exposure to the relevant allergen.111 Two recent reports have 296 

shown that, during basophil activation tests performed in blood specimens ex vivo, basophils 297 

(a potential source of PAF) can form associations with platelets,112, 113 identifying this 298 

interaction as one which should be investigated further in the context of anaphylaxis. 299 

 300 

Potential mediators of anaphylaxis 301 

 302 

Histamine  303 
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Histamine has long been considered to be an important mediator of anaphylaxis. 304 

Woodrow and colleagues showed that aerosol administration of histamine induces 305 

bronchoconstriction in healthy volunteers, although the effect of histamine was much less 306 

potent than that of leukotrienes (see Leukotrienes, below).114, 115 Intravenous administration 307 

of histamine in volunteers can reproduce many of the signs and symptoms of anaphylaxis, 308 

including cutaneous flushing, headache, airway obstruction and transient hemodynamic 309 

changes, mainly represented by systemic hypotension, tachycardia, and increased left 310 

ventricular performance.116, 117 There are four known histamine receptors, named H1-4.118 311 

Studies using receptor antagonists suggest that some of the systemic effects of histamine, 312 

including airway obstruction and tachycardia, are mainly mediated through H1R, while some 313 

others, including cutaneous flushing and headaches, seem to be mediated through both H1 314 

and H2 receptors.116 H1 antihistamines are commonly used as adjunctive treatment for acute 315 

anaphylaxis and anaphylactoid reactions.119 The contribution of histamine to anaphylaxis has 316 

also been confirmed using mouse models (summarized in Table 1). Mast cells and basophils 317 

likely represent the main sources of histamine in anaphylaxis. In agreement with that, 318 

histamine release is abrogated in mast cell-deficient mice in a model of IgE-mediated PSA,27 319 

and increases in plasma histamine levels are also abrogated, in two models of ASA, in mice 320 

deficient for both mast cells and basophils.91, 103 321 

 322 

Platelet-Activating Factor (PAF)  323 

PAF is a potent phospholipid-derived mediator implicated in platelet aggregation and 324 

thought to play important roles in a variety of immune and inflammatory responses. The 325 

biology of PAF and its potential role in anaphylaxis have been recently reviewed in detail.120 326 

PAF can be released by a variety of human cells, including purified lung mast cells and blood 327 

basophils after ex vivo stimulation with anti-IgE antibodies,121 and by purified neutrophils 328 
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after incubation in vitro with heat-aggregated human IgG.122 Many of the cell populations 329 

which produce PAF can also respond to PAF, including platelets, mast cells, neutrophils and 330 

macrophages (reviewed in120). Injection of PAF in the skin of healthy volunteers induces 331 

wheal and flare reactions.123-125 Since these reactions could be blocked by H1-antihistamines, 332 

it was first proposed that PAF induced wheals via secondary histamine release by dermal 333 

mast cells.124, 125 However, unlike human lung mast cells and peripheral blood-derived mast 334 

cells, skin mast cells do not degranulate in response to PAF stimulation ex vivo.126 In addition, 335 

Krause and collaborators showed that intradermal injection of PAF, unlike that of histamine 336 

and codeine, did not cause a statistically significant rise in dermal histamine levels in healthy 337 

volunteers.127 A limited number of reports have assessed concentrations of PAF or PAF-338 

acetylhydrolase (PAF-AH) - an enzyme responsible for the rapid degradation of PAF - after 339 

anaphylaxis in humans. In these reports, circulating PAF levels were increased and circulating 340 

PAF-AH activity was inversely correlated with the severity of anaphylaxis.65, 82, 128 341 

The contribution of PAF to anaphylaxis has been studied in more detail using 342 

pharmacologic and genetic approaches in mouse models (reviewed in Table 1). In most 343 

models, combined inhibition of histamine and PAF almost entirely blocked anaphylaxis, 344 

suggesting additive or synergistic effects of histamine and PAF. The main cellular source of 345 

PAF in these reports likely depends on the exact anaphylaxis model used. Using an adjuvant-346 

free active anaphylaxis model, we recently reported that the PAFR antagonist CV-6209 can 347 

reduce anaphylaxis in wild-type mice, but has no effect on the residual anaphylaxis observed 348 

in monocyte/macrophage-depleted mice, suggesting that monocytes/macrophages represent 349 

the major source of PAF in this model.103 350 

 351 

Cysteinyl leukotrienes (CysLTs)  352 
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A third class of potential mediators of anaphylaxis was originally termed ‘slow-reacting 353 

substance of anaphylaxis’ (SRS-A), and consists of three bioactive cysteinyl leukotrienes 354 

(CysLTs): leukotriene B4 (LTB4), LTC4 and LTD4 (reviewed in129). CysLTs are synthesized 355 

from arachidonic acid by a variety of cells, including mast cells, basophils and 356 

macrophages.130 CysLTs and their metabolites can be measured by mass spectrometry, and 357 

several reports show that levels of some of these products, namely LTE4, 2,3-dinor-9α,11β-358 

PGF2, and 9α,11β-PGF2, are increased during the onset of anaphylaxis.131-133 While these 359 

reports indicate that CysLTs and their metabolites might be good biomarkers of anaphylaxis, 360 

they do not prove that these compounds make an important contribution to the clinical 361 

manifestations of anaphylaxis. However, multiple observations suggest that CysLTs can 362 

promote acute allergic reactions. When injected intradermally in healthy volunteers, each of 363 

the three CysLTs elicited a wheal and flare reaction.134 In addition, aerosol administration of 364 

LTC4 and LTD4 in healthy subjects induced bronchoconstriction with 1,000-fold more 365 

potency than histamine114, 115, 129 (Table 1). 366 

More definitive evidence for a role of CysLTs in anaphylaxis comes from studies in 367 

mice. Mice deficient for LTC4S (a protein responsible for biosynthesis of LTC4) or for the 368 

Cys-LT receptor CysLT1R have markedly reduced IgE-mediated passive cutaneous 369 

anaphylaxis (PCA).135, 136 370 

 371 

Other potential mediators 372 

Anaphylaxis induces changes in levels of many other mediators which could potentially 373 

contribute (positively or negatively) to the clinical signs and symptoms (Table 1). This 374 

includes tryptase,64, 80, 137-139 prostaglandins132, 137 and cytokines/chemokines.65, 138 Depletion 375 

of the bradykinin precursor, high molecular weight kininogen, has been observed in 376 

anaphylaxis, likely through activation of the plasma contact system and kallakrein.64, 140, 141 377 
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Anaphylaxis patients may also experience depletion of clotting factors, including Factors V 378 

and VIII, and in extreme cases develop diffuse intravascular coagulation.64, 142 While most 379 

patients promptly treated for anaphylaxis recover without obvious sequelae, some develop 380 

recurrent signs and symptoms which require continued treatment with epinephrine and for 381 

which corticosteroids are administered.10, 143 Such sequelae are thought to reflect the “late” 382 

consequences of some of the mediators released by effectors of anaphylaxis, such as cysteinyl 383 

leukotrienes, cytokines and chemokines, or by structural cells activated in this setting.143 384 

Finally, mast cells can release adenosine upon IgE-dependent activation, and adenosine can 385 

have complex effects, mediated via various adenosine receptors with distinct functions, which 386 

have the potential to influence the pathophysiology of anaphylaxis.144 However, more work is 387 

needed to define the importance of most of these mediators in anaphylaxis, particularly in 388 

humans.  389 

	
  390 

Insights from humanized models of anaphylaxis 391 

Several ‘humanized’ mouse models of anaphylaxis have been developed to investigate 392 

the functions of human antibodies, Fc receptors and effector cells in anaphylaxis. Transgenic 393 

mice expressing human FcεRI instead of the mouse protein (hFcεRITg mice) were generated, 394 

and the expression profile of the hFcεRI transgene is very similar to that found in humans.145-395 

148 hFcεRITg mice can develop systemic anaphylaxis in response to intravenous sensitization 396 

with mouse or human IgE (mouse IgE can bind to human FcεRI, while human IgE can’t bind 397 

to the mouse receptor) followed by systemic antigen challenge,145, 148 cutaneous anaphylaxis 398 

when they are sensitized intra-dermally with serum from peanut-allergic patients and then 399 

intravenously challenged with peanut extract.149 hFcγRITg and hFcγRIIATg mice have also 400 

been generated, and the expression of hFcγRI or hFcγRIIA in such transgenic mice 401 
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recapitulates that found in humans.150, 151 Each of these transgenic models can develop IgG-402 

mediated anaphylaxis though a mechanism involving monocytes/macrophages and 403 

neutrophils.122, 152 More recently, Gillis and collaborators developed a novel mouse strain in 404 

which the human low-affinity IgG receptor locus, comprising both activating (hFcγRIIA, 405 

hFcγRIIIA, and hFcγRIIIB) and inhibitory (hFcγRIIB) hFcγR genes, has been knocked-in into 406 

the equivalent mouse locus.153 These knock-in mice are susceptible to PSA induced by 407 

injection of heat-aggregated human intravenous immunoglobulin (IVIg). The contribution of 408 

hFcγRIIA to anaphylaxis is predominant in these mice, as revealed in experiments using an 409 

anti-FcγRIIA blocking antibody.153 Antibody-mediated depletion of neutrophils, and to a 410 

lesser extent basophils, also ameliorated signs of anaphylaxis. Finally, such anaphylaxis also 411 

could be partially inhibited using either a PAF receptor antagonist or a histamine receptor 1 412 

antagonist.153 413 

Recently, three groups independently attempted to generate ‘humanized’ models of 414 

anaphylaxis using different strains of highly immunodeficient NOD-scid gamma (NSG) mice 415 

engrafted with human stem cells.154-156 Bryce and colleagues used NSG mice expressing 416 

human SCF, IL3 and GM-CSF transgenes (NSG-SGM3 mice), and engrafted them with 417 

human thymus, liver, and hematopoietic stem cells. Such engraftment resulted in the 418 

development of large numbers of ‘human’ mast cells in NSG-SGM3 mice in the peritoneal 419 

cavity and peripheral tissues.156 The authors could induce both PCA and PSA reactions upon 420 

sensitization with a chimeric IgE containing the human constant region, and challenge with 421 

the relevant antigen.156 Burton and colleagues used NSG mice carrying a human SCF 422 

transgene and engrafted with human hematopoietic stem cells.154 The authors demonstrated 423 

that such engrafted mice also develop large numbers of ‘human’ mast cells, produce human 424 

IgE (hIgE) in response to gavage with peanut extract, and develop anaphylaxis upon 425 

subsequent oral challenge with peanut.154 Importantly, anaphylaxis in this model could be 426 
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blocked in mice treated with the anti-hIgE antibody omalizumab (which does not recognize 427 

mouse IgE).154 Pagovich et al. also developed a ‘humanized’ model of peanut anaphylaxis in 428 

NSG mice engrafted with blood mononuclear cells from patients with peanut allergy with a 429 

clinical history of anaphylaxis.155 These mice produced human IgE and IgG antibodies in 430 

response to intraperitoneal sensitizations with peanut, and developed anaphylaxis upon 431 

subsequent oral challenges with peanut.155 Again, anaphylaxis was reduced in mice treated 432 

with omalizumab, as well as in mice which had received an adeno-associated virus (AAV) 433 

coding for omalizumab.155 434 

Altogether, results from such humanized models of anaphylaxis suggest that both hIgE 435 

and hIgG have the potential to induce anaphylaxis through their respective Fc receptors, and 436 

also suggest that peanut anaphylaxis is highly dependent on IgE. 437 

 438 

Genetic diversity/host factors influencing anaphylaxis 439 

 Genetic modifiers may influence mast cell activation and the development of 440 

anaphylaxis, as demonstrated in differences observed between the 129/Sv and C57BL/6 441 

strains of mice.157 129/Sv mice demonstrated higher levels of plasma histamine than did 442 

C57BL/6 mice following anaphylaxis induced by anti-IgE. Although higher numbers of mast 443 

cells and serum IgE levels in the 129/Sv mice could potentially explain these differences, the 444 

authors also demonstrated that bone marrow-derived cultured mast cells from 129/Sv mice 445 

degranulated more robustly than those from C57BL/6 while synthesizing similar quantities of 446 

cytokines.157 However, the specific genetic modifiers responsible for these observed 447 

differences between the two strains of mice remain unknown. 448 

 Ethnic differences in rates of food allergy and anaphylaxis suggest that genetic 449 

modifiers also may exist in human populations.158, 159 Reasons for these ethnic disparities 450 

remain unclear, but may reflect true genetic differences, environmental factors, including 451 
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socioeconomic status, or a combination of factors. Nevertheless, a handful of genetic 452 

polymorphisms have been described that may influence development of anaphylaxis. Genetic 453 

polymorphisms in IL-4Rα, IL-10, and IL-13 have been linked to the development of 454 

anaphylaxis to drugs and latex160-162 but theoretically may influence allergen sensitization 455 

more than (or in addition to) effector mechanisms during anaphylaxis.  456 

Polymorphisms affecting metabolism of mediators of anaphylaxis also may influence 457 

anaphylaxis severity. As mentioned above, PAF-AH activity levels inversely correlated with 458 

severity of anaphylaxis.65, 82, 128 A loss of function mutation in PAF-AH, V279F has been 459 

linked with asthma, but not yet with anaphylaxis.163 Individuals with variants in 460 

angiotensinogen, i.e. the MM genotype associated with decreased levels of angiotensinogen, 461 

were reported to have increased rates of hymenoptera venom allergy and more severe 462 

reactions during venom immunotherapy.164 Similarly, amongst patients with tree nut and 463 

peanut allergies, lower serum ACE levels were associated with more severe pharyngeal 464 

edema, presumably through decreased bradykinin metabolism.165 465 

A few mutations have been described that may influence development and severity of 466 

anaphylaxis. An activating mutation in c-KIT, D816V, promotes mast cell proliferation in 467 

clonal mast cell disorders including mastocytosis166, 167 (also see Akins et al36 in this issue of 468 

JACI). D816V mutations are also found in some patients with recurrent anaphylaxis who do 469 

not have increased mast cell numbers on pathology and therefore do not meet criteria for 470 

mastocytosis;168 while this suggests that that their mast cells are hyperresponsive, this has not 471 

yet been substantiated. In autosomal dominant hyper-IgE syndrome caused by loss-of-472 

function mutations in STAT3, patients have increased levels of total and allergen specific 473 

IgEs, but clinically lower rates of anaphylaxis.169 This clinical observation may be explained, 474 

at least in part, by decreased mast cell degranulation169 and/or by inhibition of enhanced 475 
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vascular permeability through increased resilience of adherens junctions in patients and cells 476 

with STAT3 loss of function mutations.170 477 

The role of sex hormones in anaphylaxis is unclear. Anaphylaxis occurs more 478 

commonly in women than men.171, 172 Moreover, in a model of PSA, female mice exhibited a 479 

greater drop in body temperature than did male mice, and this sex difference could be 480 

abrogated by ovariectomy or administration of estrogen antagonist to female mice.173 481 

However, analysis of patients in an anaphylaxis registry revealed an increased severity of 482 

anaphylaxis in male versus female patients of 13-56 years of age, but no sex differences in 483 

anaphylaxis severity for prepubescent individuals or those older than 56 years old.174 484 

 485 

Recovery from anaphylaxis 486 

Many of those who have experienced anaphylaxis and were not treated have survived the 487 

episode, particularly those with less severe presentations. What is the basis of such recovery? 488 

Variations in metabolism of mediators, including PAF and bradykinin, may influence 489 

manifestations of anaphylaxis65, 82, 128, 165 and theoretically the ability to recover from these 490 

manifestations. In animal models of anaphylaxis and in humans undergoing insect sting 491 

challenge, levels of substances with endogenous vasopressor activity, including epinephrine, 492 

norepinephrine and angiotensin II, are increased within minutes following development of 493 

anaphylaxis,175, 176 likely to compensate for the vasodilation and fluid extravasation occurring 494 

during anaphylaxis. Observations that beta-adrenergic blockade can exacerbate systemic 495 

anaphylaxis in mouse and rat models177, 178 and in people with severe anaphylaxis due to 496 

multiple causes,179-182 particularly when combined with angiotensin converting enzyme 497 

(ACE) inhibitors,183 support a role for endogenous vasopressors in limiting the severity of 498 

pathophysiological changes in anaphylaxis. Mast cell degranulation releases chymase, which 499 

can convert angiotensin I to angiotensin II,184 and may thereby directly contribute to increased 500 
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angiotensin II levels observed following anaphylaxis. In a recent paper, Nakamura and 501 

colleagues showed that mice in which mast cells cannot produce prostaglandin D2 (PGD2) 502 

have enhanced manifestations of IgE-mediated anaphylaxis. Therefore, it appears that mast 503 

cells also can secrete anti-anaphylactic mediators which might help to limit anaphylactic 504 

responses.185 Finally, it is possible that genetically-determined or other differences in mast 505 

cell activation or mediator release profiles also might contribute to differences in the 506 

manifestations of, or recovery from, anaphylaxis.  507 

 508 

Can anaphylaxis be beneficial? 509 

Using mouse models, we recently reported that the development of a type 2 immune 510 

response to honeybee venom (BV) could increase the survival of mice challenged with whole 511 

BV186. Also, others have shown in mice that a type 2 immune response to BV phospholipase 512 

A2 (bvPLA2, which is considered to be the major BV allergen in humans) could diminish the 513 

drop in body temperature induced by challenge with a “near-lethal” dose of bvPLA2.187 514 

Importantly, these effects were dependent on IgE,186 and on the high affinity IgE receptor, 515 

FcεRI.186, 187 In a follow-up study, we also provided evidence that IgE, FcεRI and mast cells 516 

can enhance the survival of mice injected with Russell's viper venom.188 One of the 517 

mechanisms by which innate activation of mouse mast cells can enhance the survival of naïve 518 

mice upon their first exposure to various arthropod189 or reptile188-190 venoms is the 519 

proteolytic reduction of the toxicity of venom components by mast cell-derived 520 

carboxypeptidase 3A190, 191 or mouse mast cell protease 4 (chymase).189 Given that snake (or 521 

arthropod) envenomation in the field can result in systemic distribution of the venom, one 522 

could argue that systemic IgE-dependent mast cell activation in this setting could both 523 

produce the clinical picture of anaphylaxis and also result in the systemic release of mediators 524 

(i.e. mast cell proteases) that can degrade toxic components of the venom. In such settings, 525 
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anaphylaxis could be beneficial, if it prevents death by envenomation -- and the unfortunate 526 

individual also survives the anaphylaxis. Although we don’t know whether human IgE also 527 

can enhance resistance to venoms (and we imagine that we would have some trouble enlisting 528 

volunteers for such a study), it is tempting to speculate that anaphylaxis induced by small 529 

amounts of venom (e.g. a single or wasp bee sting) represents only the most extreme and 530 

maladaptive end of a spectrum of acquired IgE-mediated immune responses to venom that 531 

includes, at the other end of the spectrum, appropriately regulated immune responses that can 532 

enhance resistance to such venoms.  533 

 534 

Concluding remarks 535 

Anaphylaxis represents one of the most urgent of medical emergencies, where rapid 536 

diagnosis and prompt and appropriate treatment can mean the difference between life and 537 

death. While there has been steady progress in our understanding of the antibodies, effector 538 

cells and mediators that can contribute to the development and manifestations of anaphylaxis, 539 

especially in the context of mouse models of the disorder, the basic clinical management of 540 

anaphylaxis has changed little in decades (see Castells et al.6 in this issue of JACI) and Table 541 

2. In a report published in 2005, Sampson et al.5 identified as major research needs both the 542 

development of “universally accepted diagnostic criteria” and the importance of identifying 543 

“reliable laboratory biomarkers to confirm the clinical impression”. As noted in our 544 

Introduction, the first need largely has been addressed by international, interdisciplinary 545 

efforts to forge consensus. But the second need remains essentially unfulfilled. It is our hope 546 

that further progress in understanding the immunopathogenesis and pathophysiology of 547 

anaphylaxis in all of its various forms will help to guide efforts to devise more effective 548 

strategies for preventing this disorder and also to provide more effective options for rapidly 549 

diagnosing and effectively treating anaphylaxis when it occurs.  550 
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Figure legends 1123 

 1124 

Figure 1. Multiple potential pathways in antibody-mediated anaphylaxis. A. Antigen-1125 

specific IgE antibodies and FcεRI-bearing effector cells (e.g. mast cells, basophils) play a 1126 

dominant role in anaphylaxis induced (sometimes by very small amounts of antigen) when 1127 

concentrations of IgG antibodies are low. B. Mouse models of anaphylaxis suggest that IgG 1128 

antibodies and FcγR-bearing effector cells (e.g. basophils, macrophages, neutrophils, as well 1129 

as mast cells) can be important effectors of anaphylaxis induced by large amounts of antigen 1130 

in the presence of high concentrations of IgG antibodies. Some examples of anaphylaxis 1131 

likely involve both pathways (A and B). Note that co-engagement of ITAM-containing 1132 

activating FcγRs or FcεRI with the ITIM-bearing FcγRIIB (on mast cells [in mice, but 1133 

perhaps not in humans] or basophils [in humans and mice]) can act to diminish effector cell 1134 

activation. In red: Strong evidence for the importance of these mediators in human 1135 

anaphylaxis induced by antigen; in blue: These elements can participate in models of 1136 

anaphylaxis in mice but their importance in human anaphylaxis is not yet clear; in grey: 1137 

Elements with the potential to influence anaphylaxis, but their importance in human or mouse 1138 

anaphylaxis not yet clear (e.g., human mast cells are thought to make little or no serotonin). 1139 

 1140 

Figure 2. Pathophysiological changes in anaphylaxis and mediators that have been 1141 

implicated in these processes. Note: As mentioned in the text, first line treatment of 1142 

anaphylaxis consists of the rapid administration of epinephrine (see Castells et al.6). Although 1143 

there is evidence that the mediators shown in the figure, particularly histamine and cysteinyl 1144 

leukotrienes, contribute to some of the various signs and symptoms of anaphylaxis, and anti-1145 

histamines are routinely administered to patients with anaphylaxis, pharmacological targeting 1146 
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of such mediators represents second line treatment and should not be considered as an 1147 

alternative to epinephrine. In red: Strong evidence for the importance of that mediator, in 1148 

humans, in the development of some of the signs and symptoms listed in the adjacent box; in 1149 

blue: these elements can be important in mouse models of anaphylaxis but their importance in 1150 

human anaphylaxis is not yet clear (studies in human subjects suggest that cysteinyl 1151 

leukotrienes may contribute importantly to the bronchoconstriction and enhanced vascular 1152 

permeability associated with anaphylaxis [see text]); in grey: elements with the potential to 1153 

influence anaphylaxis, but their importance in human or mouse anaphylaxis not yet clear. 1154 

Note that some mediators (underlined) are likely to contribute to the development of late 1155 

consequences of anaphylaxis.  1156 
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Effector mechanisms Humans Mice 
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IgE 

- Elevated IgE levels in individuals with allergic 
diseases16, 19 
- Purified IgE can transfer skin reactivity from a 
sensitized human subject to a naive host17, 21-23 
- The anti-IgE Ab omalizumab can decrease the risks 
of anaphylaxis30-35 

- PCA and PSA induced by transfer of antigen-specific 
IgE into naïve mice and challenge with the antigen24, 25 
-  IgE-mediated PCA and PSA is abrogated in mice 
lacking the high affinity IgE receptor FcεRI25 
- ASA partially reduced in IgE-deficient or Fcεr1-/- 
mice in some models, but not in others53, 89, 93, 103, 192, 

193 

IgG 

- No definitive evidence to date 
- Cases of anaphylaxis reported following treatment 
with therapeutic mAbs without detectable levels of 
anti-drug IgE58, 194-196 

- IgG1, IgG2a and IgG2b (but not IgG3) can induce 
PSA50-60 
- IgG-PSA is reduced in FcγRIII-/- mice51, 52 
-  IgG1- and IgG2b- (but not IgG2a-) PSA is enhanced 
in FcγRIIB-/- mice52 

- Mice deficient in FcεRIα exhibit enhanced systemic 
anaphylaxis upon challenge with 2.4G2 anti-FcγRII/III 
Abs20 
- Mice deficient for IgG1 or FcγRIII are largely 
protected in several ASA models89, 102, 103 

- ‘Humanized’ mice expressing human FcγRI or 
FcγRIIA can develop IgG-mediated anaphylaxis150, 151, 

153 

C
om

pl
em
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Anaphylatoxins 

- Injection of low doses of C3a, C4a or C5a in the 
skin of healthy volunteers induces immediate wheal 
and flare reactions66-69 
- Blood levels of C3a, C4a and C5a correlate with 
the severity of anaphylaxis in humans65 

- Reduced peanut-induced anaphylaxis in C4-/- mice197 
- Reduced IgE-PCA in mice in which mast cells lack 
C3aR or C5aR198 
- Anaphylaxis induced by direct activation of 
complement by peanut extract in one model177 
- C3-/- mice can fully develop IgG-PSA model199 
- ASA is not affected in C2-, C5- and C5aR-deficient 
mice, or after depletion of complement using cobra 
venom factor192, 200 

E
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Mast cells 

- Elevated levels of tryptase have been detected 
during acute anaphylaxis in humans65, 79-82 
- High occurrence of anaphylaxis in patients with 
mastocytosis85-87 

- IgE-PCA and PSA markedly reduced in various 
strains of mast cell-deficient mice26-28, 58, 88 
- ASA reduced in mast cell-deficient mice in some 
studies, but not in others51, 54, 89-93, 103, 192, 201 

Basophils 

- No definitive evidence to date 
- “basophil activation tests” used to diagnose or 
confirm allergen sensitization96-99 

- Controversial: some reports indicate a contribution of 
basophils to IgG-PSA52, 54, 56 or ASA53, 89, 91, while 
others found no significant role for basophils52, 92, 103, 

199, 202 

Neutrophils 
- MPO levels are increased in patients with 
anaphylaxis as compared to healthy donors106 

- Antibody-mediated neutrophil depletion reduces 
IgG-PSA and ASA in some52, 53, 56 but not all91, 103 
models 

Monocytes/ 
macrophages 

- Not yet determined - Depletion of monocytes/macrophages using 
clodronate liposomes can reduce IgG-PSA and ASA52, 

89, 92, 102, 103 

Platelets 

- No definitive evidence to date 
- Anaphylaxis in humans is associated with platelet 
activation108 

- No definitive evidence to date 
- Depletion of platelets with anti-platelet antibodies 
(daily for 3 days) or neuraminidase does not reduce 
ASA102 

 M
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Histamine 

- Aerosol administration of histamine induces 
bronchoconstriction in healthy volunteers114, 115 
- Intravenous administration of histamine in 
volunteers can reproduce many of the symptoms of 
anaphylaxis116, 117 
- H1 antihistamines are commonly used as 
adjunctive therapy for acute anaphylaxis and 
anaphylactoid reactions119 

- Histamine injection induces anaphylaxis203, 204 
- H1 antihistamine reduces IgE-PSA203 
- IgG-PSA and ASA are reduced in mice pre-treated 
with H1 antihistamine in some models52, 103, 205, but not 
in others53, 102 
- Mice deficient for the histidine decarboxylase (HDC) 
gene are protected from IgE-PSA203 
- H1R- and H2R-deficient mice are partially protected 
from IgE-PSA204 

Cysteinyl 
leukotrienes 

(CysLTs) 

- Levels of some CysLTs are increased during the 
onset of anaphylaxis131-133 
- Intradermal injection of leukotriene B4 (LTB4), 
LTC4 and LTD4 induces a wheal and flare reaction 
in healthy volunteers134 
- Aerosol administration of LTC4 and LTD4 in 
healthy subjects induces bronchoconstriction114, 115, 

- Reduced IgE-PSA in mice deficient for LTC4S135 
- Mice deficient for CysLT1R also have significantly 
reduced IgE-PCA136 
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Table 1. Roles (or potential roles) of various antibodies, effector cells and mediators in 1157 
anaphylaxis in humans and mice 1158 
 1159 
 1160 
 1161 
Table 2. Key concepts and therapeutic implications. 
• Although mice clearly can develop both IgE- and IgG- dependent anaphylaxis, the existence 
of IgG-mediated anaphylaxis in humans has not been conclusively demonstrated. 
• In addition to mast cells and basophils, macrophages, neutrophils, and perhaps other 
leukocytes, and platelets, also may produce a diverse array of inflammatory mediators during 
anaphylaxis, and such products have the potential to contribute to reactions that may be 
difficult to treat, protracted in nature, or biphasic. 
• Genetic modifiers and other host factors, as well as gene-environment interactions, may 
influence the development of anaphylactic reactivity, as well as the presentation and/or 
severity of anaphylaxis. 
• Although the potential evolutionary benefit of anaphylaxis remains uncertain, recent 
evidence in mice suggests that anaphylaxis may have effects that can reduce the toxic effects 
of certain arthropod or reptile venoms. 
 1162 

 1163 

 1164 

 1165 

129 

PAF 

- Injection of PAF in the skin of healthy volunteers 
induces wheal and flare reactions123-125  
- Circulating PAF levels increase and circulating 
PAF-AH activity decreases in proportion to the 
severity of anaphylaxis65, 82, 128 

- PAF is released during IgG-PSA and ASA53, 91 
- Injection of PAF induces anaphylaxis206 
- Reduced ASA in mice deficient for the PAF receptor 
(PAFR)207 
- PAFR antagonists can partially reduce anaphylaxis in 
IgG-PSA and ASA models52, 53, 57, 58, 91, 102, 103 

Others 

- Anaphylaxis induces increases in levels of many 
mediators which could potentially contribute 
(positively or negatively) to the clinical signs and 
symptoms. This includes various cytokines and 
chemokines, prostaglandins, tryptase, bradykinin, 
serotonin, etc. 

- Mast cell-derived prostaglandin D2 (PGD2) can limit 
IgE-PCA and IgE-PSA185 
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