C. J. Gorter, A possible explanation of the increase of the electrical resistance of thin metal films at low temperatures and small field strengths, Physica, vol.17, issue.8, p.777, 1951.
DOI : 10.1016/0031-8914(51)90098-5

W. Chen and H. Ahmed, Fabrication of 5???7 nm wide etched lines in silicon using 100 keV electron???beam lithography and polymethylmethacrylate resist, Applied Physics Letters, vol.62, issue.13, p.1499, 1993.
DOI : 10.1063/1.109609

W. Chen and H. Ahmed, Fabrication of sub-10 nm structures by lift-off and by etching after electron-beam exposure of poly(methylmethacrylate) resist on solid substrates, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.11, issue.6, p.2519, 1993.
DOI : 10.1116/1.586658

A. Bezryadin and C. Dekker, Electrostatic trapping of single conducting nanoparticles between nanoelectrodes, Applied Physics Letters, vol.71, issue.9, p.1273, 1997.
DOI : 10.1063/1.119871

A. F. Morpurgo and C. M. Marcus, Controlled fabrication of metallic electrodes with atomic separation, Applied Physics Letters, vol.74, issue.14, p.2084, 1999.
DOI : 10.1063/1.123765

E. Scheer and N. Agrait, The signature of chemical valence in the electrical conduction through a single-atom contact, Nature, vol.54, issue.6689, p.154, 1998.
DOI : 10.1038/28112

E. A. Dobisz and C. R. Marrian, Sub???30 nm lithography in a negative electron beam resist with a vacuum scanning tunneling microscope, Applied Physics Letters, vol.58, issue.22, p.2526, 1991.
DOI : 10.1063/1.104841

T. Miyazaki and K. Kobayashi, Fabrication of Nanometer-Scale Pattern Using Current-Controlled Scanning Probe Lithography, Japanese Journal of Applied Physics, vol.41, issue.Part 1, No. 7B, p.4948, 2002.
DOI : 10.1143/JJAP.41.4948

M. Kato and M. Ishibashi, Nanofabrication Using Atomic Force Microscopy Lithography for Molecular Devices, Japanese Journal of Applied Physics, vol.41, issue.Part 1, No. 7B, p.4916, 2002.
DOI : 10.1143/JJAP.41.4916

D. Porath and M. Tarabiah, molecules in the presence of charging effects, Physical Review B, vol.56, issue.15, p.9829, 1997.
DOI : 10.1103/PhysRevB.56.9829

S. M. Lindsay, Single Molecule Electronics and Tunneling in Molecules, Japanese Journal of Applied Physics, vol.41, issue.Part 1, No. 7B, p.4867, 2002.
DOI : 10.1143/JJAP.41.4867

M. Dorogi and J. Gomez, Room-temperature Coulomb blockade from a self-assembled molecular nanostructure, Physical Review B, vol.52, issue.12, p.9071, 1995.
DOI : 10.1103/PhysRevB.52.9071

H. Park and A. K. Lim, Fabrication of metallic electrodes with nanometer separation by electromigration, Applied Physics Letters, vol.75, issue.2, p.301, 1999.
DOI : 10.1063/1.124354

M. Austin and S. Y. Chou, Fabrication of nanocontacts for molecular devices using nanoimprint lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.20, issue.2, p.665, 2002.
DOI : 10.1116/1.1463068

J. Moreland and J. W. Ekin, Electron tunneling experiments using Nb???Sn ??????break?????? junctions, Journal of Applied Physics, vol.58, issue.10, p.3888, 1985.
DOI : 10.1063/1.335608

M. A. Reed and C. Zhou, Conductance of a Molecular Junction, Science, vol.278, issue.5336, p.252, 1997.
DOI : 10.1126/science.278.5336.252

E. Scheer and P. Joyez, Conduction Channel Transmissions of Atomic-Size Aluminum Contacts, Physical Review Letters, vol.78, issue.18, p.3535, 1997.
DOI : 10.1103/PhysRevLett.78.3535

W. Chen and H. Ahmed, Metal-based single electron transistors, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.15, issue.4, p.1402, 1997.
DOI : 10.1116/1.589548

C. Vieu and A. Pépin, Coulomb blockade devices fabricated by liquid metal ion source droplet deposition, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.6, p.3789, 1998.
DOI : 10.1116/1.590408

Y. Nakamura and C. Chen, 100-K Operation of Al-Based Single-Electron Transistors, Japanese Journal of Applied Physics, vol.35, issue.Part 2, No. 11A, p.1465, 1996.
DOI : 10.1143/JJAP.35.L1465

S. Heike and T. Hashizume, Atomic resolution noncontact atomic force/scanning tunneling microscopy using a 1 MHz quartz resonator, Applied Physics Letters, vol.83, issue.17, p.3620, 2003.
DOI : 10.1063/1.1623012

E. S. Snow and D. Park, Single???atom point contact devices fabricated with an atomic force microscope, Applied Physics Letters, vol.69, issue.2, p.269, 1996.
DOI : 10.1063/1.117946

K. Matsumoto and M. Ishii, /Ti system, Applied Physics Letters, vol.68, issue.1, p.34, 1996.
DOI : 10.1063/1.116747

G. Binnig and C. F. Quate, Atomic Force Microscope, Physical Review Letters, vol.56, issue.9, p.930, 1986.
DOI : 10.1103/PhysRevLett.56.930

T. Hertel and R. Martel, Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces, The Journal of Physical Chemistry B, vol.102, issue.6, p.910, 1998.
DOI : 10.1021/jp9734686

T. Junno and S. Carlsson, Fabrication of quantum devices by ??ngstr??m-level manipulation of nanoparticles with an atomic force microscope, Applied Physics Letters, vol.72, issue.5, p.548, 1998.
DOI : 10.1063/1.120754

Y. Yin and Y. Lu, Template-Assisted Self-Assembly:?? A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures, Journal of the American Chemical Society, vol.123, issue.36, p.8718, 2001.
DOI : 10.1021/ja011048v

Y. Cui and M. T. Björk, Integration of Colloidal Nanocrystals into Lithographically Patterned Devices, Nano Letters, vol.4, issue.6, p.1093, 2004.
DOI : 10.1021/nl049488i

J. A. Liddle and Y. Cui, Lithographically directed self-assembly of nanostructures, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.22, issue.6, p.3409, 2004.
DOI : 10.1116/1.1821572

F. Shreiber, Structure and growth of self-assembling monolayers, Progress in Surface Science, vol.65, issue.5-8, p.151, 2000.
DOI : 10.1016/S0079-6816(00)00024-1

M. D. Porter and T. B. Bright, Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry, Journal of the American Chemical Society, vol.109, issue.12, p.3559, 1987.
DOI : 10.1021/ja00246a011

C. D. Bain and E. Barry, Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold, Journal of the American Chemical Society, vol.111, issue.1, p.321, 1989.
DOI : 10.1021/ja00183a049

D. L. Klein and P. L. Mceuen, An approach to electrical studies of single nanocrystals, Applied Physics Letters, vol.68, issue.18, p.2574, 1996.
DOI : 10.1063/1.116188

I. Amlani and A. M. Rawlett, An approach to transport measurements of electronic molecules, Applied Physics Letters, vol.80, issue.15, p.2761, 2002.
DOI : 10.1063/1.1469655

S. H. Hong and H. K. Kim, Fabrication of single electron transistors with molecular tunnel barriers using ac dielectrophoresis technique, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.24, issue.1, p.136, 2006.
DOI : 10.1116/1.2150227

M. Tanase and D. M. Silevitch, Magnetic trapping and self-assembly of multicomponent nanowires, Journal of Applied Physics, vol.91, issue.10, p.8549, 2002.
DOI : 10.1063/1.1452206

S. Pignard and G. Goglio, Study of the magnetization reversal in individual nickel nanowires, Journal of Applied Physics, vol.87, issue.2, p.824, 2000.
DOI : 10.1063/1.371947

B. H. Choi and S. W. Hwang, A silicon self assembled quantum dot transistor operating at room temperature, Microelectronic Engineering, vol.47, issue.1-4, p.115, 1999.
DOI : 10.1016/S0167-9317(99)00165-3

X. Li and Y. Liu, Orientational self-assembled field-effect transistors based on a single-walled carbon nanotube, Applied Physics Letters, vol.87, issue.24, p.243102, 2005.
DOI : 10.1063/1.2137464

A. Heuberger, X-ray lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.6, issue.1, p.107, 1987.
DOI : 10.1116/1.584026

J. Silverman, X-ray lithography: Status, challenges, and outlook for 0.13 ??m, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.15, issue.6, p.2117, 1997.
DOI : 10.1116/1.589231

W. Chen and H. Ahmed, Fabrication of 5???7 nm wide etched lines in silicon using 100 keV electron???beam lithography and polymethylmethacrylate resist, Applied Physics Letters, vol.62, issue.13, p.1499, 1993.
DOI : 10.1063/1.109609

S. D. Berger and J. M. Gibson, New approach to projection???electron lithography with demonstrated 0.1 ??m linewidth, Applied Physics Letters, vol.57, issue.2, p.153, 1990.
DOI : 10.1063/1.103969

H. C. Pfeiffer and W. , PREVAIL - An e-beam stepper with Variable Axis Immersion Lenses, Microelectronic Engineering, vol.27, issue.1-4, p.143, 1995.
DOI : 10.1016/0167-9317(94)00075-6

S. Heike and T. Hashizume, Atomic resolution noncontact atomic force/scanning tunneling microscopy using a 1 MHz quartz resonator, Applied Physics Letters, vol.83, issue.17, p.3620, 2003.
DOI : 10.1063/1.1623012

S. Y. Chou and P. K. Krauss, Imprint of sub???25 nm vias and trenches in polymers, Applied Physics Letters, vol.67, issue.21, p.3114, 1995.
DOI : 10.1063/1.114851

J. Haisman and M. Verheijen, Mold-assisted nanolithography: A process for reliable pattern replication, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.6, p.4124, 1996.
DOI : 10.1116/1.588604

C. M. Sotomayor-torres and S. Zankovych, Nanoimprint lithography: an alternative nanofabrication approach, Materials Science and Engineering: C, vol.23, issue.1-2, p.23, 2003.
DOI : 10.1016/S0928-4931(02)00221-7

C. Gourgon and C. Perret, Uniformity across 200???mm silicon wafers printed by nanoimprint lithography, Journal of Physics D: Applied Physics, vol.38, issue.1, p.70, 2005.
DOI : 10.1088/0022-3727/38/1/012

URL : https://hal.archives-ouvertes.fr/hal-00385736

F. Lazzarino and P. Schiavone, Mold deformation in nanoimprint lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.22, issue.6, p.3318, 2004.
DOI : 10.1116/1.1815299

URL : https://hal.archives-ouvertes.fr/hal-00022171

S. Y. Chou and P. R. Krauss, Sub-10 nm imprint lithography and applications, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.15, issue.6, p.2897, 1997.
DOI : 10.1116/1.589752

M. D. Austin and H. Ge, Fabrication of 5nm linewidth and 14nm pitch features by nanoimprint lithography, Applied Physics Letters, vol.84, issue.26, p.5299, 2004.
DOI : 10.1063/1.1766071

F. Hua and Y. Sun, Polymer Imprint Lithography with Molecular-Scale Resolution, Nano Letters, vol.4, issue.12, p.2467, 2004.
DOI : 10.1021/nl048355u

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.453.18

K. Pfeiffer and G. Bleidiessel, Suitability of new polymer materials with adjustable glass temperature for nano-imprinting, Microelectronic Engineering, vol.46, issue.1-4, p.431, 1999.
DOI : 10.1016/S0167-9317(99)00126-4

H. Schultz and H. , New polymer materials for nanoimprinting, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.4, p.1861, 2000.
DOI : 10.1116/1.1305331

H. Scheer and H. Schultz, A contribution to the flow behaviour of thin polymer films during hot embossing lithography, Microelectronic Engineering, vol.56, issue.3-4, p.311, 2001.
DOI : 10.1016/S0167-9317(01)00569-X

H. Schift and S. Saxer, Controlled co-evaporation of silanes for nanoimprint stamps, Nanotechnology, vol.16, issue.5, p.171, 2005.
DOI : 10.1088/0957-4484/16/5/007

G. Jung and Z. Li, Improved Pattern Transfer in Nanoimprint Lithography at 30 nm Half-Pitch by Substrate???Surface Functionalization, Langmuir, vol.21, issue.14, p.6127, 2005.
DOI : 10.1021/la050021c

A. Lebib and S. P. Li, Size and thickness dependencies of magnetization reversal in Co dot arrays, Journal of Applied Physics, vol.89, issue.7, p.3892, 2001.
DOI : 10.1063/1.1355282

P. R. Krauss and S. Y. Chou, Nano-compact disks with 400???Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe, Applied Physics Letters, vol.71, issue.21, p.3174, 1997.
DOI : 10.1063/1.120280

H. Cao and Z. Yu, Fabrication of 10 nm enclosed nanofluidic channels, Applied Physics Letters, vol.81, issue.1, p.174, 2002.
DOI : 10.1063/1.1489102

V. Studer and A. Pepin, Nanoembossing of thermoplastic polymers for microfluidic applications, Applied Physics Letters, vol.80, issue.19, p.3614, 2002.
DOI : 10.1063/1.1479202

J. Seekamp and S. Zankovych, Nanoimprinted passive optical devices, Nanotechnology, vol.13, issue.5, p.581, 2002.
DOI : 10.1088/0957-4484/13/5/307

URL : http://dx.doi.org/10.1088/0957-4484/13/5/307

B. E. Little and S. T. Chu, TOWARD VERY LARGE-SCALE INTEGRATED PHOTONICS, Optics and Photonics News, vol.11, issue.11, p.24, 2000.
DOI : 10.1364/OPN.11.11.000024

C. Chao and L. J. Guo, Thermal-flow technique for reducing surface roughness and controlling gap size in polymer microring resonators, Applied Physics Letters, vol.84, issue.14, p.2479, 2004.
DOI : 10.1063/1.1691492

V. Van and P. P. Absil, Propagation loss in single-mode GaAs-AlGaAs microring resonators: measurement and model, Journal of Lightwave Technology, vol.19, issue.11, p.1734, 2001.
DOI : 10.1109/50.964074

M. Austin and S. Y. Chou, Fabrication of nanocontacts for molecular devices using nanoimprint lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.20, issue.2, p.665, 2002.
DOI : 10.1116/1.1463068

I. Martini and J. Dechow, GaAs field effect transistors fabricated by imprint lithography, Microelectronic Engineering, vol.60, issue.3-4, p.451, 2002.
DOI : 10.1016/S0167-9317(01)00705-5

L. Guo and P. R. Krauss, Nanoscale silicon field effect transistors fabricated using imprint lithography, Applied Physics Letters, vol.71, issue.13, p.1881, 1997.
DOI : 10.1063/1.119426

Y. Chen and D. Macintyre, Fabrication of high electron mobility transistors with T-gates by nanoimprint lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.20, issue.6, p.2887, 2002.
DOI : 10.1116/1.1520564

O. Sugihara and M. Nakanishi, Simultaneous process of embossing and poling at elevated temperatures:???a simple technique for nonlinear grating formation in polymer films, Optics Letters, vol.25, issue.14, p.1028, 2000.
DOI : 10.1364/OL.25.001028

J. D. Hoff and L. J. Cheng, Nanoscale Protein Patterning by Imprint Lithography, Nano Letters, vol.4, issue.5, p.853, 2004.
DOI : 10.1021/nl049758x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.7771

R. S. Kane and S. Takayama, Patterning proteins and cells using soft lithography, Biomaterials, vol.20, issue.23-24, p.2363, 1999.
DOI : 10.1016/S0142-9612(99)00165-9

L. Tan and Y. P. Kong, Imprinting of polymer at low temperature and pressure, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.22, issue.5, p.2486, 2004.
DOI : 10.1116/1.1800353

K. A. Lister and S. Thoms, Direct imprint of sub-10???nm features into metal using diamond and SiC stamps, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.22, issue.6, p.3257, 2004.
DOI : 10.1116/1.1825010

M. D. Austin and H. Ge, Fabrication of 5nm linewidth and 14nm pitch features by nanoimprint lithography, Applied Physics Letters, vol.84, issue.26, p.5299, 2004.
DOI : 10.1063/1.1766071

P. R. Krauss and S. Y. Chou, Nano-compact disks with 400???Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe, Applied Physics Letters, vol.71, issue.21, p.3174, 1997.
DOI : 10.1063/1.120280

S. Marceau and J. Tortai, Thickness-dependent glass transition temperature of thin resist films for high resolution lithography, Microelectronic Engineering, vol.83, issue.4-9, p.1073, 2006.
DOI : 10.1016/j.mee.2006.01.227

URL : https://hal.archives-ouvertes.fr/hal-00394493

G. Jung and Z. Li, Vapor-Phase Self-Assembled Monolayer for Improved Mold Release in Nanoimprint Lithography, Langmuir, vol.21, issue.4, p.1158, 2005.
DOI : 10.1021/la0476938

M. Keill and M. Beck, Development and characterization of silane antisticking layers on nickel-based stamps designed for nanoimprint lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.23, issue.2, p.575, 2005.
DOI : 10.1116/1.1880292

D. K. Owens and R. C. Wendt, Estimation of the surface free energy of polymers, Journal of Applied Polymer Science, vol.13, issue.8, p.1741, 1969.
DOI : 10.1002/app.1969.070130815

F. M. Fowkes and W. D. Harkins, The State of Monolayers Adsorbed at the Interface Solid???Aqueous Solution, Journal of the American Chemical Society, vol.62, issue.12, p.3377, 1940.
DOI : 10.1021/ja01869a029

X. Detter and R. Palla, Impact of chemistry on profile control of resist masked silicon gates etched in high density halogen-based plasmas, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.21, issue.5, p.2174, 2003.
DOI : 10.1116/1.1612932

URL : https://hal.archives-ouvertes.fr/hal-00477204

M. F. Ashby, Choix des matériaux en conception mécanique, Editions Dunod, 2004.

J. Turkevitch and . Stevenson, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discussions of the Faraday Society, vol.11, p.55, 1951.
DOI : 10.1039/df9511100055

V. G. Levich, Physicochemical Hydrodynamics, 1962.

S. G. Fischer and L. S. Lerman, Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis, Cell, vol.16, issue.1, p.191, 1979.
DOI : 10.1016/0092-8674(79)90200-9

J. Gao and M. Mrksich, Using capillary electrophoresis to follow the acetylation of the amino groups of insulin and to estimate their basicities, Analytical Chemistry, vol.67, issue.18, p.3093, 1995.
DOI : 10.1021/ac00114a001

C. Huang and P. Chiu, Electrochemically Controlling the Size of Gold Nanoparticles, Journal of The Electrochemical Society, vol.153, issue.12, p.193, 2006.
DOI : 10.1149/1.2358103

X. Xiong and P. Makaram, Large scale directed assembly of nanoparticles using nanotrench templates, Applied Physics Letters, vol.89, issue.19, p.193108, 2006.
DOI : 10.1063/1.2385067

M. Washizu and S. Suzuki, Molecular dielectrophoresis of biopolymers, IEEE Transactions on Industry Applications, vol.30, issue.4, p.835, 1994.
DOI : 10.1109/28.297897

T. Müller and A. Gerardino, Trapping of micrometre and sub-micrometre particles by high-frequency electric fields and hydrodynamic forces, Journal of Physics D: Applied Physics, vol.29, issue.2, p.340, 1996.
DOI : 10.1088/0022-3727/29/2/010

F. F. Becker and X. Wang, The removal of human leukaemia cells from blood using interdigitated microelectrodes, Journal of Physics D: Applied Physics, vol.27, issue.12, p.2659, 1994.
DOI : 10.1088/0022-3727/27/12/030

G. H. Markx and R. Pethig, Dielectrophoretic separation of cells: Continuous separation, Biotechnology and Bioengineering, vol.694, issue.4, p.337, 1994.
DOI : 10.1002/bit.260450408

G. H. Markx and M. S. Talary, Separation of viable and non-viable yeast using dielectrophoresis, Journal of Biotechnology, vol.32, issue.1, p.29, 1994.
DOI : 10.1016/0168-1656(94)90117-1

J. Batchelder, Dielectrophoretic manipulator, Review of Scientific Instruments, vol.54, issue.3, p.300, 1983.
DOI : 10.1063/1.1137387

A. Castellanos and A. Ramos, Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws, Journal of Physics D: Applied Physics, vol.36, issue.20, p.2584, 2003.
DOI : 10.1088/0022-3727/36/20/023

H. Morgan and N. G. Green, AC Electrokinetics : colloids and nanoparticles, 2003.

R. H. Klunder and J. Hoekstar, An Analytical Description for the Single Electron Current Regime of the Metal Single Electron Tunnel Transistor, 2001.

M. H. Devoret and H. Et-grabert, Single Charge Tunneling. Coulomb Blockade Phenomena in Nanostructures, NATO ASI Series B, vol.294, 1992.
DOI : 10.1007/978-1-4757-2166-9_1

K. K. Likharev, Single-electron devices and their applications, Proc. IEEE, p.606, 1999.
DOI : 10.1109/5.752518

. Également-Été-caractérisé, On constate que les sauts de courant sont également estompés au fur et à mesure des différents essais effectués