«. Décret, suspendant l'obligation d'achat de l'électricité produite par certaines installations utilisant l'énergie radiative du soleil, Journal Officiel de la République Française, p.21598, 1510.

H. J. Hovel, Semiconductors and semimetals, 1975.

E. Van-dyk and E. Meyer, Analysis of the effect of parasitic resistances on the performance of photovoltaic modules, Renewable Energy, vol.29, issue.3, pp.333-344, 2004.
DOI : 10.1016/S0960-1481(03)00250-7

E. Radziemska, « Dark I-U-T measurements of single crystalline silicon solar cells », Energy Conversion and Management, pp.1485-1494, 2005.
DOI : 10.1016/j.enconman.2004.08.004

B. Parida, S. Iniyan, and R. Goic, A review of solar photovoltaic technologies, Renewable and Sustainable Energy Reviews, vol.15, issue.3, pp.1625-1636, 2011.
DOI : 10.1016/j.rser.2010.11.032

C. J. Allègre, J. Poirier, E. Humler, and A. W. Hofmann, The chemical composition of the Earth, The chemical composition of the earth, pp.515-526, 1995.
DOI : 10.1016/0012-821X(95)00123-T

K. Fukutani, M. Kanbe, W. Futako, B. Kaplan, T. Kamiya et al., Fortmann et I. Shimizu, « Band gap tuning of a-Si :H from 1.55 ev to 2.10 ev by intentionally promoting structural relaxation, Journal of Non-Crystalline Solids, pp.227-230, 1998.

W. Futako, K. Yoshino, and C. M. , Wide band gap amorphous silicon thin films prepared by chemical annealing, Journal of Applied Physics, vol.85, issue.2, pp.812-818, 1999.
DOI : 10.1063/1.369165

H. Schlangenotto, H. Maeder, and W. Gerlach, Temperature dependence of the radiative recombination coefficient in silicon, Physica Status Solidi (a), vol.15, issue.1, pp.357-367, 1974.
DOI : 10.1002/pssa.2210210140

M. A. Green, Intrinsic concentration, effective densities of states, and effective mass in silicon, Journal of Applied Physics, vol.67, issue.6, p.2944, 1990.
DOI : 10.1063/1.345414

S. Sze, Physis of semiconductor devices, 1981.

R. Vankemmel, W. Schoenmaker, K. D. Meyer, and «. A. , A unified wide temperature range model for the energy gap, the effective carrier mass and intrinsic concentration in silicon, Solid-State Electronics, vol.36, issue.10, pp.1379-1384, 1993.
DOI : 10.1016/0038-1101(93)90046-S

Y. Varshni, Temperature dependence of the energy gap in semiconductors, Physica, vol.34, issue.1, pp.149-154, 1967.
DOI : 10.1016/0031-8914(67)90062-6

C. Thurmond, The Standard Thermodynamic Functions for the Formation of Electrons and Holes in Ge, Si, GaAs, and GaP, Journal of The Electrochemical Society, vol.122, issue.8, p.1133, 1975.
DOI : 10.1149/1.2134410

V. Alex, S. Finkbeiner, and J. Weber, Temperature dependence of the indirect energy gap in crystalline silicon, Journal of Applied Physics, vol.79, issue.9, p.6943, 1996.
DOI : 10.1063/1.362447

A. Sproul and M. Green, Improved value for the silicon intrinsic carrier concentration from 275 to 375 K, Journal of Applied Physics, vol.70, issue.2, pp.846-854, 1991.
DOI : 10.1063/1.349645

P. Norton and T. Braggins, -Type Silicon, Physical Review B, vol.8, issue.12, p.5632, 1973.
DOI : 10.1103/PhysRevB.8.5632

URL : https://hal.archives-ouvertes.fr/hal-00506453

C. Canali, C. Jacoboni, G. Otiaviani, and A. A. , High???field diffusion of electrons in silicon, Applied Physics Letters, vol.27, issue.5, p.278, 1975.
DOI : 10.1063/1.88465

S. R. Muller and T. I. Kamins, Device Electronics for Integrated Circuits, 2003.

C. Jacoboni, C. Canali, G. Otiaviani, and A. A. Quaranta, A review of some charge transport properties of silicon, Solid-State Electronics, vol.20, issue.2, pp.77-89, 1977.
DOI : 10.1016/0038-1101(77)90054-5

S. Li and W. Thurber, The dopant density and temperature dependence of electron mobility and resistivity in n-type silicon, Solid-State Electronics, vol.20, issue.7, pp.609-616, 1977.
DOI : 10.1016/0038-1101(77)90100-9

D. B. Klaassen and «. A. , A unified mobility model for device simulation???I. Model equations and concentration dependence, Solid-State Electronics, vol.35, issue.7, pp.953-959, 1992.
DOI : 10.1016/0038-1101(92)90325-7

D. B. Klaassen and «. A. , A unified mobility model for device simulation???II. Temperature dependence of carrier mobility and lifetime, Solid-State Electronics, vol.35, issue.7, pp.961-967, 1992.
DOI : 10.1016/0038-1101(92)90326-8

M. Green and M. Keevers, « Optical properties of intrinsic silicon at 300K », Progress in Photovoltaics : Research and Applications, pp.189-192, 1995.

P. J. Mcmarr, K. Vedam, and J. Narayan, Spectroscopic ellipsometry: A new tool for nondestructive depth profiling and characterization of interfaces, Journal of Applied Physics, vol.59, issue.3, pp.694-701, 1986.
DOI : 10.1063/1.336639

M. Kerr, Surface, Emitter and Bulk Recombination in Silicon and Development of Silicon Nitride Passivated Solar Cells, Thèse doctorat, 2002.

R. Cariou and M. Labrune, Thin crystalline silicon solar cells based on epitaxial films grown at 165??C by RF-PECVD, Solar Energy Materials and Solar Cells, vol.95, issue.8, pp.2260-2263, 2011.
DOI : 10.1016/j.solmat.2011.03.038

URL : https://hal.archives-ouvertes.fr/hal-00749873

M. Labrune, Silicon surface passivation and epitaxial growth on c-Si by low temperature plasma processes for high efficiency solar cells, Thèse doctorat, École Polytechnique, 2011.
URL : https://hal.archives-ouvertes.fr/pastel-00611652

D. Chapin, C. Fuller, and G. Pearson, Junction Photocell for Converting Solar Radiation into Electrical Power, Journal of Applied Physics, vol.25, issue.5, p.676, 1954.
DOI : 10.1063/1.1721711

J. Zhao, A. Wang, and M. A. Green, Performance degradation in CZ(B) cells and improved stability high efficiency PERT and PERL silicon cells on a variety of SEH MCZ(B), FZ(B) and CZ(Ga) substrates, Progress in Photovoltaics : Research and Applications, pp.438-447, 2000.
DOI : 10.1002/1099-159X(200009/10)8:5<549::AID-PIP346>3.0.CO;2-Y

T. Saitoh, H. Hashigami, S. Rein, and S. Glunz, « Overview of light degradation research on crystalline silicon solar cells, Progress in Photovoltaics : Research and Applications, pp.537-547, 2000.

J. Cotter, J. Guo, P. Cousins, M. Abbott, F. Chen et al., P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells, IEEE Transactions on Electron Devices, vol.53, issue.8, pp.1893-1901, 2006.
DOI : 10.1109/TED.2006.878026

D. Macdonald, Recombination and Trapping in Multicrystalline Silicon Solar Cells, Thèse doctorat, 2001.

G. P. Willeke, « The crystalline silicon solar cell -history, achievements and perspectives, 19th European Photovoltaic Solar Energy Conference Proceedings, 2004.

M. A. Green, Crystalline silicon solar cells, 2001.

T. Schutz-kuchly, Y. Veschetti, R. Cabal, V. Sanzone, and D. Heslinga, « High efficiency on inversed emitter n-type silicon solar cell adapted to a wide range of resistivity, 24th European Photovoltaic Solar Energy Conference Proceedings, 2009.

S. Dubois, O. Palais, M. Pasquinelli, S. Martinuzzi, C. Jaussaud et al., Influence of iron contamination on the performances of single-crystalline silicon solar cells: Computed and experimental results, Journal of Applied Physics, vol.100, issue.2, p.24510, 2006.
DOI : 10.1063/1.2218593

A. Jäger-waldau, «. Pv-status, and . Report, Research, Solar Cell Production and Market Implementation of Photovoltaics », JRC Scientific and Technique Reports, 2010.

I. Gordon, S. Vallon, A. Mayolet, G. Beaucarne, and J. Poortmans, Thin-film monocrystalline-silicon solar cells made by a seed layer approach on glass-ceramic substrates, Solar Energy Materials and Solar Cells, vol.94, issue.2, pp.381-385, 2010.
DOI : 10.1016/j.solmat.2009.08.015

A. Adikaari, N. Mudugamuwa, and S. Silva, Nanocrystalline silicon solar cells from excimer laser crystallization of amorphous silicon, Solar Energy Materials and Solar Cells, vol.92, issue.6, pp.634-638, 2010.
DOI : 10.1016/j.solmat.2008.01.011

Z. Said-bacar, Y. Leroy, F. Antoni, A. Slaoui, and E. Fogarassy, Modeling of CW laser diode irradiation of amorphous silicon films, Applied Surface Science, vol.257, issue.12, pp.5127-5131, 2011.
DOI : 10.1016/j.apsusc.2010.11.025

URL : https://hal.archives-ouvertes.fr/hal-00597133

J. Moll, « The evolution of the theory fot the voltage-current characteristic of p-n junctions, Proceedings of the Institute of Radio Engineers, pp.1076-1082, 1958.

G. A. Hurkx, D. B. Klaassen, and M. P. Knuvers, A new recombination model for device simulation including tunneling, IEEE Transactions on Electron Devices, vol.39, issue.2, pp.331-338, 1992.
DOI : 10.1109/16.121690

K. B. Mcafee, E. J. Ryder, W. Shockley, and M. Sparks, Junctions, Observations of Zener current in germanium p-n junctions, pp.650-651, 1951.
DOI : 10.1103/PhysRev.83.650

M. Alonso-garcía and J. Ruíz, Analysis and modelling the reverse characteristic of photovoltaic cells, Solar Energy Materials and Solar Cells, vol.90, issue.7-8, pp.1105-1120, 2006.
DOI : 10.1016/j.solmat.2005.06.006

H. Gummel and D. Scharfetter, Step Junctions, Journal of Applied Physics, vol.38, issue.5, pp.2148-2153, 1967.
DOI : 10.1063/1.1709844

D. Diouf, Cellules photovoltaïques silicium à hétérojonctions et à structure interdigitée en face arrière, Thèse doctorat, 2010.

R. A. Street, Hydrogenated amorphous silicon. Cambridge Solid State Science Series, 1991.

H. Fujiwara, Y. Toyoshima, M. Kondo, and A. Matsuda, thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy, Physical Review B, vol.60, issue.19, p.13598, 1999.
DOI : 10.1103/PhysRevB.60.13598

J. Ogier, Sur la formation thermique de l'hydrogène silicié, pp.116-118, 1879.

R. C. Chittick, J. H. Alexander, and H. F. , The Preparation and Properties of Amorphous Silicon, Journal of The Electrochemical Society, vol.116, issue.1, p.77, 1969.
DOI : 10.1149/1.2411779

W. Spear, Substitutional doping of amorphous silicon, Solid State Communications, vol.17, issue.9, p.1193, 1975.
DOI : 10.1016/0038-1098(75)90284-7

E. A. Davis and N. F. , Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philosophical Magazine, vol.119, issue.179, p.903, 1970.
DOI : 10.1002/pssb.19700370140

M. Powell and S. Deane, Improved defect-pool model for charged defects in amorphous silicon, Physical Review B, vol.48, issue.15, pp.10815-10827, 1993.
DOI : 10.1103/PhysRevB.48.10815

E. C. Freeman and W. Paul, Optical constants of rf sputtered hydrogenated amorphous Si, Physical Review B, vol.20, issue.2, pp.716-728, 1979.
DOI : 10.1103/PhysRevB.20.716

J. Tauc, Optical properties of solids. F. Abelès, 1970.

O. Panwar, C. Mukherjee, and R. Bhattacharyya, Effect of annealing on the electrical, optical and structural properties of hydrogenated amorphous silicon films deposited in an asymmetric R.F. plasma CVD system at room temperature, Solar Energy Materials and Solar Cells, vol.57, issue.4, pp.373-391, 1999.
DOI : 10.1016/S0927-0248(98)00193-7

D. L. Staebler and C. R. , Reversible conductivity changes in discharge???produced amorphous Si, Applied Physics Letters, vol.31, issue.4, p.292, 1977.
DOI : 10.1063/1.89674

R. Street, J. Kakalios, C. Tsai, and T. Hayes, Thermal-equilibrium processes in amorphous silicon, Thermal-equilibrium processes in amorphous silicon, pp.1316-1333, 1987.
DOI : 10.1103/PhysRevB.35.1316

P. Roca-i-cabarrocas and A. , Fontcuberta i Morral et Y. Poissant, « Growth and optoelectronic properties of polymorphous silicon thin films, Thin Solid Films, pp.403-404, 2002.

L. Kroely, Process and material challenges in the high rate deposition of microcrystalline silicon thin films and solar cells by Matrix Distributed Electron Cyclotron Resonance plasma, Thèse doctorat, École Polytechnique, 2010.
URL : https://hal.archives-ouvertes.fr/pastel-00550241

J. Ballutaud, Study of radio-frequency plasma deposition of amorphous silicon for the improvement of solar cell production, Thèse doctorat, 2003.

H. Wiesmann, A. K. Ghosh, T. Mcmahon, and M. Strongin, a???Si???:???H produced by high???temperature thermal decomposition of silane, Journal of Applied Physics, vol.50, issue.5, pp.3752-3754, 1979.
DOI : 10.1063/1.326284

P. Roca-i-cabarrocas, S. Kumar, and B. Drevillon, by combining spectroscopic ellipsometry and Kelvin probe measurements, Journal of Applied Physics, vol.66, issue.7, pp.3286-3292, 1989.
DOI : 10.1063/1.344122

Y. M. Soro, Caractérisation électronique de couches minces de silicium polymorphe (pm-Si :H) déposées à grande vitesse pour le photovoltaïque, Thèse doctorat, 2010.

C. Godet, Variable range hopping revisited: the case of an exponential distribution of localized states, Journal of Non-Crystalline Solids, vol.299, issue.302, pp.299-302, 2002.
DOI : 10.1016/S0022-3093(01)01008-0

S. R. Elliott, Physics of amorphous materials, 1984.

D. I. Jones, P. G. Comber, and W. E. Spear, Thermoelectric power in phosphorous doped amorphous silicon, Thermoelectric power in phosphorous doped amorphous silicon, pp.541-551, 1977.
DOI : 10.1080/14786437708239738

F. Ghiassy, D. I. Jones, and A. D. Stewart, The transport properties of boron-doped amorphous silicon and their interpretation, Philosophical Magazine Part B, vol.43, issue.2, pp.139-152, 1985.
DOI : 10.1080/01418638508244277

O. S. Panwar, P. N. Dixit, A. Tyagi, T. Seth, B. S. Satyanarayan et al., Electrical properties of boron-doped hydrogenated amorphous silicon films prepared by glow discharge decomposition in dilute silane, Thin Solid Films, vol.176, issue.1, pp.79-90, 1989.
DOI : 10.1016/0040-6090(89)90366-0

J. M. Marshall and C. Main, A new procedure for calculating the density and energy distribution of localized hopping sites in disordered semiconductors, using low-temperature electrical conductivity data, Journal of Physics: Condensed Matter, vol.20, issue.28, p.285210, 2008.
DOI : 10.1088/0953-8984/20/28/285210

C. Longeaud and J. Kleider, General analysis of the modulated-photocurrent experiment including the contributions of holes and electrons, Physical Review B, vol.45, issue.20, p.11672, 1992.
DOI : 10.1103/PhysRevB.45.11672

R. Brüggemann, C. Main, J. Berkin, and S. Reynolds, An evaluation of phase-shift analysis of modulated photocurrents, Philosophical Magazine Part B, vol.62, issue.1, p.29, 1990.
DOI : 10.1080/13642818808218383

J. Luckas, S. Kremers, D. Krebs, M. Salinga, M. Wuttig et al., « The influence of a temperature dependent band gap on the energy scale of modulated photo current experiments, Journal of Applied Physics, 2011.

M. Stutzmann, W. B. Jackson, and C. C. Tsai, Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study, Physical Review B, vol.32, issue.1, pp.23-47, 1985.
DOI : 10.1103/PhysRevB.32.23

H. M. Branz, Hydrogen collision model:???Quantitative description of metastability in amorphous silicon, Physical Review B, vol.59, issue.8, pp.5498-5512, 1999.
DOI : 10.1103/PhysRevB.59.5498

O. Saadane, Etude du silicium polymorphe hydrogéné en couches minces pour applications photovoltaïques, Thèse doctorat, 2003.

C. Longeaud, D. Roy, and O. Saadane, Role of interstitial hydrogen and voids in light-induced metastable defect formation in hydrogenated amorphous silicon: A model, Physical Review B, vol.65, issue.8, p.85206, 2002.
DOI : 10.1103/PhysRevB.65.085206

M. Meaudre and R. Meaudre, structures; the role of light exposure and annealing, Journal of Physics: Condensed Matter, vol.13, issue.24, pp.5663-5673, 2001.
DOI : 10.1088/0953-8984/13/24/311

C. Longeaud and J. Kleider, Density of states and capture cross-sections in annealed and light-soaked hydrogenated amorphous silicon layers, Journal of Non-Crystalline Solids, vol.198, issue.200, pp.198-200, 1996.
DOI : 10.1016/0022-3093(95)00707-5

C. Longeaud, J. Kleider, P. Roca-i-cabarrocas, S. Hamma, R. M. Et et al., Properties of a new a-Si :H-like material : hydrogenated polymorphous silicon, Journal of Non-Crystalline Solids, pp.227-230, 1998.

C. Longeaud, D. Roy, and Z. T. Hangouan, Evolution with light soaking of the conduction band tail of amorphous-silicon-like materials, Applied Physics Letters, vol.77, issue.22, pp.3604-3606, 2000.
DOI : 10.1063/1.1328770

R. Butté, R. Meaudre, M. Meaudre, S. Vignoli, C. Longeaud et al., Some electronic and metastability properties of a new nanostructured material: Hydrogenated polymorphous silicon, Philosophical Magazine Part B, vol.56, issue.7, pp.7-1079, 1999.
DOI : 10.1016/S0022-3093(05)80097-3

A. Abramov and A. Kosarev, Roca i Cabarrocas, « Kinetics of defects and electron, hole diffusion lengths during light soaking and consequent annealing, Journal of Non-Crystalline Solids, vol.26626989, pp.419-422, 2000.

N. Wyrsch and A. Shah, Drift mobility and Staebler-Wronski effect in hydrogenated amorphous silicon, Solid State Communications, vol.80, issue.10, pp.807-809, 1991.
DOI : 10.1016/0038-1098(91)90512-T

M. Y. Soro, M. E. Gueunier-farret, and J. Kleider, Structural and electronic properties of hydrogenated polymorphous silicon films deposited at high rate, Journal of Applied Physics, vol.109, issue.2, p.23713, 2011.
DOI : 10.1063/1.3536474

URL : https://hal.archives-ouvertes.fr/hal-00710726

Y. Tawada, M. Kondo, H. Okamoto, and Y. Hamakawa, Hydrogenated amorphous silicon carbide as a window material for high efficiency a-Si solar cells, Solar Energy Materials, vol.6, issue.3, pp.219-315, 1982.
DOI : 10.1016/0165-1633(82)90036-3

K. V. Maydell, M. Schmidt, L. Korte, A. Laades, E. Conrad et al., Scherff et W. Fuhs, « Basic electronic properties and optimization of TCO/a-Si :H(n)/c-Si(p) hetero solar cells, Photovoltaic Specialists Conference, pp.1225-1228, 2005.

D. Macdonald, Recombination and Trapping in Multicrystalline Silicon Solar Cells, Thèse doctorat, 2001.

G. Schumm, C. Abel, and G. Bauer, Photoconductivity and µ × ? products in a-Si :H compatibility with various defect models, Journal of Non-Crystalline Solids, vol.137, issue.138, pp.351-354, 1991.

N. Wyrsch and A. Shah, Drift mobility and Staebler-Wronski effect in hydrogenated amorphous silicon, Solid State Communications, vol.80, issue.10, pp.807-809, 1991.
DOI : 10.1016/0038-1098(91)90512-T

T. F. Schulze, L. Korte, E. Conrad, M. Schmidt, and B. Rech, Electrical transport mechanisms in a-Si:H/c-Si heterojunction solar cells, Journal of Applied Physics, vol.107, issue.2, p.23711, 2010.
DOI : 10.1063/1.3267316

H. Fujiwara and M. Kondo, Effects of a???Si:H layer thicknesses on the performance of a???Si:H???c???Si heterojunction solar cells, Journal of Applied Physics, vol.101, issue.5, p.54516, 2007.
DOI : 10.1063/1.2559975

Y. Tawada, M. Kondo, H. Okamoto, and Y. Hamakawa, Hydrogenated amorphous silicon carbide as a window material for high efficiency a-Si solar cells, Solar Energy Materials, vol.6, issue.3, pp.219-315, 1982.
DOI : 10.1016/0165-1633(82)90036-3

T. Mueller, S. Schwertheim, Y. Huang, M. Scherff, and W. R. Fahrner, « Surface passivation of heterojunction solar cells using PECV-Deposited hydrogenated amorphous silicon oxide layers, 17th Workshop on Crystalline Silicon Solar Cells and Modules : Materials and Processes, pp.237-242, 2007.

H. Fujiwara, T. Kaneko, and M. Kondo, Optimization of interface structures in crystalline silicon heterojunction solar cells, Solar Energy Materials and Solar Cells, vol.93, issue.6-7, pp.725-728, 2009.
DOI : 10.1016/j.solmat.2008.09.007

D. Pysch, J. Ziegler, J. Becker, D. Suwito, S. Janz et al., Stretched-exponential increase in the open-circuit voltage induced by thermal annealing of amorphous silicon-carbide heterojunction solar cells, Applied Physics Letters, vol.94, issue.9, p.93510, 2009.
DOI : 10.1063/1.3083552

H. Schlangenotto, H. Maeder, and W. Gerlach, Temperature dependence of the radiative recombination coefficient in silicon, Physica Status Solidi (a), vol.15, issue.1, pp.357-367, 1974.
DOI : 10.1002/pssa.2210210140

P. P. Altermatt, F. Geelhaar, T. Trupke, X. Dai, and A. , Injection dependence of spontaneous radiative recombination in crystalline silicon: Experimental verification and theoretical analysis, Applied Physics Letters, vol.88, issue.26, p.261901, 2006.
DOI : 10.1063/1.2218041

J. Dziewior and W. Schmid, Auger coefficients for highly doped and highly excited silicon, Applied Physics Letters, vol.31, issue.5, pp.346-348, 1977.
DOI : 10.1063/1.89694

M. Kerr, Surface, Emitter and Bulk Recombination in Silicon and Development of Silicon Nitride Passivated Solar Cells, Thèse doctorat, 2002.

I. Martin, Silicon surface passivation by Plasma Enhanced Chemical Vapor Deposited amorphous silicon carbide films, Thèse doctorat, 2002.

P. P. Altermatt, J. Schmidt, G. Heiser, and A. G. , Assessment and parameterisation of Coulomb-enhanced Auger recombination coefficients in lowly injected crystalline silicon, Journal of Applied Physics, vol.82, issue.10, pp.4938-4944, 1997.
DOI : 10.1063/1.366360

M. J. Kerr and A. Cuevas, General parameterization of Auger recombination in crystalline silicon, Journal of Applied Physics, vol.91, issue.4, pp.2473-2480, 2002.
DOI : 10.1063/1.1432476

S. Rein, T. Rehrl, W. Warta, and S. W. Glunz, Lifetime spectroscopy for defect characterization: Systematic analysis of the possibilities and restrictions, Journal of Applied Physics, vol.91, issue.4, pp.2059-2070, 2002.
DOI : 10.1063/1.1428095

S. W. Glunz, D. Biro, S. Rein, and W. Warta, Field-effect passivation of the SiO2Si interface, Journal of Applied Physics, vol.86, issue.1, pp.683-691, 1999.
DOI : 10.1063/1.370784

J. Brody, A. Rohatgi, and A. Ristow, Review and comparison of equations relating bulk lifetime and surface recombination velocity to effective lifetime measured under flash lamp illumination, Solar Energy Materials and Solar Cells, vol.77, issue.3, pp.293-301, 2003.
DOI : 10.1016/S0927-0248(02)00350-1

K. L. Luke and L. Cheng, Analysis of the interaction of a laser pulse with a silicon wafer: Determination of bulk lifetime and surface recombination velocity, Journal of Applied Physics, vol.61, issue.6, pp.2282-2293, 1987.
DOI : 10.1063/1.337938

M. Garín, U. Rau, W. Brendle, I. Martín, and R. Alcubilla, Characterization of a-Si:H???c-Si interfaces by effective-lifetime measurements, Journal of Applied Physics, vol.98, issue.9, p.93711, 2005.
DOI : 10.1063/1.2128047

S. Olibet, E. Vallat-sauvain, and C. Ballif, Model for a-Si:H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds, Physical Review B, vol.76, issue.3, p.35326, 2007.
DOI : 10.1103/PhysRevB.76.035326

C. Leendertz, N. Mingirulli, T. F. Schulze, J. Kleider, B. Rech et al., Discerning passivation mechanisms at a-Si:H/c-Si interfaces by means of photoconductance measurements, Applied Physics Letters, vol.98, issue.20, p.202108, 2011.
DOI : 10.1063/1.3590254

URL : https://hal.archives-ouvertes.fr/hal-00710735

R. A. Sinton and A. Cuevas, Contactless determination of current???voltage characteristics and minority???carrier lifetimes in semiconductors from quasi???steady???state photoconductance data, Applied Physics Letters, vol.69, issue.17, p.2510, 1996.
DOI : 10.1063/1.117723

A. Cuevas, R. Sinton, and M. Stuckings, Determination of recombination parameters in semiconductors from photoconductance measurements, 1996 Conference on Optoelectronic and Microelectronic Materials and Devices. Proceedings, 1996.
DOI : 10.1109/COMMAD.1996.610047

J. Brody, A. Rohatgi, and A. Ristow, « Guidelines for more accurate determination and interpretation of effective lifetime from measured quasi-steady-state photoconductance, Proceedings of 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes, 2001.

H. Nagel, C. Berge, and A. Aberle, Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors, Journal of Applied Physics, vol.86, issue.11, pp.6218-6221, 1999.
DOI : 10.1063/1.371633

D. Macdonald and A. Cuevas, Trapping of minority carriers in multicrystalline silicon, Applied Physics Letters, vol.74, issue.12, pp.1710-1712, 1999.
DOI : 10.1063/1.123663

M. Bail, M. Schulz, and R. Brendel, Space-charge region-dominated steady-state photoconductance in low-lifetime Si wafers, Applied Physics Letters, vol.82, issue.5, pp.757-759, 2003.
DOI : 10.1063/1.1541115

P. J. Cousins, D. H. Neuhaus, and J. E. Cotter, Experimental verification of the effect of depletion-region modulation on photoconductance lifetime measurements, Journal of Applied Physics, vol.95, issue.4, pp.1854-1858, 2004.
DOI : 10.1063/1.1638618

S. Bowden and R. A. Sinton, Determining lifetime in silicon blocks and wafers with accurate expressions for carrier density, Journal of Applied Physics, vol.102, issue.12, p.124501, 2007.
DOI : 10.1063/1.2818371

R. Sinton and A. Cuevas, « A quasi-steady-state open-cicuit voltage method for solar cell characterisation, 16th European Photovoltaic Solar Energy Conference, pp.1-5, 2000.

M. Kerr and A. Cuevas, « Generalized analysis of the illumination intensity vs. open-circuit voltage of solar cells », Solar Energy, pp.263-267, 2004.

A. Cuevas and F. Recart, Capacitive effects in quasi-steady-state voltage and lifetime measurements of silicon devices, Journal of Applied Physics, vol.98, issue.7, p.74507, 2005.
DOI : 10.1063/1.2073973

A. Cuevas and R. A. , Sinton, « Detailed modelling of silicon solar cells, 23rd EPVSEC Proceedings, 2008.

A. Cuevas and J. Tan, Analytical and computer modelling of suns???Voc silicon solar cell characteristics, Solar Energy Materials and Solar Cells, vol.93, issue.6-7, pp.258-260, 2009.
DOI : 10.1016/j.solmat.2008.11.041

S. Deb and B. R. Nag, Measurement of Lifetime of Carriers in Semiconductors through Microwave Reflection, Journal of Applied Physics, vol.33, issue.4, p.1604, 1962.
DOI : 10.1063/1.1728779

Y. Mada, A Nondestructive Method for Measuring the Spatial Distribution of Minority Carrier Lifetime in Silicon Wafer, Japanese Journal of Applied Physics, vol.18, issue.11, pp.2171-2172, 1979.
DOI : 10.1143/JJAP.18.2171

K. Ramspeck, K. Bothe, J. Schmidt, and R. Brendel, Correlation between spatially resolved solar cell efficiency and carrier lifetime of multicrystalline silicon, Journal of Materials Science: Materials in Electronics, vol.101, issue.68, pp.4-8, 2008.
DOI : 10.1007/s10854-008-9671-8

M. Kunst and G. Beck, The study of charge carrier kinetics in semiconductors by microwave conductivity measurements, Journal of Applied Physics, vol.60, issue.10, pp.3558-3566, 1986.
DOI : 10.1063/1.337612

. Semilab, « The theory of µw-PCD for measuring lifetime

K. Lauer, A. Laades, H. Übensee, A. Lawerenz, and H. Metzner, « Evaluation of the microwave detected photoconductance decay in multicrystalline silicon, Proceedings of 22nd EPVSEC, pp.1344-1347, 2007.

K. Lauer, A. Laades, H. Ubensee, H. Metzner, and A. Lawerenz, Detailed analysis of the microwave-detected photoconductance decay in crystalline silicon, Journal of Applied Physics, vol.104, issue.10, p.104503, 2008.
DOI : 10.1063/1.3021459

R. Brendel, Note on the interpretation of injection-level-dependent surface recombination velocities, Applied Materials Physics : Materials Science & Processing, pp.523-524, 1995.
DOI : 10.1007/BF01538780

F. M. Schuurmans, A. Schonecker, A. R. Burgers, and W. C. Sinke, Simplified evaluation method for light-biased effective lifetime measurements, Applied Physics Letters, vol.71, issue.13, pp.1795-1797, 2004.
DOI : 10.1063/1.119401

O. Hahneiser and M. Kunst, Theoretical and experimental study of charge carrier kinetics in crystalline silicon, Journal of Applied Physics, vol.85, issue.11, pp.7741-7754, 1999.
DOI : 10.1063/1.370579

J. Schmidt, Measurement of differential and actual recombination parameters on crystalline silicon wafers [solar cells], IEEE Transactions on Electron Devices, vol.46, issue.10, pp.2018-2025, 1999.
DOI : 10.1109/16.791991

G. Citarella, S. Von-aichberger, and M. Kunst, Microwave photoconductivity techniques for the characterization of semiconductors, Materials Science and Engineering: B, vol.91, issue.92, pp.91-92, 2002.
DOI : 10.1016/S0921-5107(01)01014-5

O. Palais and A. Arcari, Contactless measurement of bulk lifetime and surface recombination velocity in silicon wafers, Journal of Applied Physics, vol.93, issue.8, pp.4686-4690, 2003.
DOI : 10.1063/1.1562741

E. Daub and P. Würfel, Ultralow Values of the Absorption Coefficient of Si Obtained from Luminescence, Physical Review Letters, vol.74, issue.6, pp.1020-1023, 1995.
DOI : 10.1103/PhysRevLett.74.1020

V. Alex, S. Finkbeiner, and J. Weber, Temperature dependence of the indirect energy gap in crystalline silicon, Journal of Applied Physics, vol.79, issue.9, p.6943, 1996.
DOI : 10.1063/1.362447

P. Würfel, T. Trupke, T. Puzzer, E. Schäffer, W. Warta et al., Diffusion lengths of silicon solar cells from luminescence images, Journal of Applied Physics, vol.101, issue.12, p.123110, 2007.
DOI : 10.1063/1.2749201

Y. Sayad, D. Blanc, A. Kaminski, G. Bremond, and M. Lemiti, Diffusion length determination in solar grade silicon by room temperature photoluminescence measurements, physica status solidi (c), vol.8, issue.3, pp.808-811, 2011.
DOI : 10.1002/pssc.201000216

T. Trupke, R. Bardos, F. Hudert, P. Würfel, J. Zhao et al., « Effective excess carrier lifetimes exceeding 100 milliseconds in float zone silicon determined from photoluminescence, Proceedings of the 19th European Photovoltaic Solar Energy Conference, 2004.

S. Tardon, M. Rösch, R. Brüggemann, T. Unold, and G. Bauer, Photoluminescence studies of a-Si:H/c-Si-heterojunction solar cells, Journal of Non-Crystalline Solids, vol.338, issue.340, pp.338-340, 2004.
DOI : 10.1016/j.jnoncrysol.2004.03.015

T. Trupke, R. A. Bardos, M. Schubert, and W. Warta, Photoluminescence imaging of silicon wafers, Photoluminescence imaging of silicon wafers, p.44107, 2006.
DOI : 10.1063/1.2234747

M. Green and M. Keevers, « Optical properties of intrinsic silicon at 300K », Progress in Photovoltaics : Research and Applications, pp.189-192, 1995.

S. Tardon and R. Brüggemann, Characterization of the interface properties in a-Si???:???H/c-Si heterostructures by photoluminescence, Journal of Physics D: Applied Physics, vol.43, issue.11, pp.115102-115109, 2010.
DOI : 10.1088/0022-3727/43/11/115102

URL : https://hal.archives-ouvertes.fr/hal-00569553

R. Brüggemann and S. Reynolds, Modulated photoluminescence studies for lifetime determination in amorphous-silicon passivated crystalline-silicon wafers, Journal of Non-Crystalline Solids, vol.352, issue.9-20, pp.1888-1891, 2006.
DOI : 10.1016/j.jnoncrysol.2005.11.092

R. Chouffot, A. Brezard-oudot, J. Kleider, R. Brüggemann, M. Labrune et al., Modulated photoluminescence as an effective lifetime measurement method: Application to a-Si:H/c-Si heterojunction solar cells, Materials Science and Engineering: B, vol.159, issue.160, 2008.
DOI : 10.1016/j.mseb.2008.10.038

URL : https://hal.archives-ouvertes.fr/hal-00445959

R. Chouffot, S. Ibrahim, R. Bruggemann, A. Gudovskikh, J. Kleider et al., Comparison of photoluminescence and capacitance spectroscopies as efficient tools for interface characterisation of heterojunction solar cells, Journal of Non-Crystalline Solids, vol.354, issue.19-25, pp.2416-2420, 2008.
DOI : 10.1016/j.jnoncrysol.2007.09.032

URL : https://hal.archives-ouvertes.fr/hal-00322314

R. Brüggemann, Characterisation and optimisation of amorphous silicon/crystallin silicon heterojunction solar cells, Journal of Optoelectronics and Advanced Materials, vol.11, issue.9, pp.1072-1078, 2009.

W. Favre, J. Kleider, D. Muñoz, S. M. De-nicolás, and P. Ribeyron, Spatially resolved lifetime measurements of silicon heterojunctions from the modulated photoluminescence technique, physica status solidi (c), vol.8, issue.3, pp.775-778, 2011.
DOI : 10.1002/pssc.201000286

URL : https://hal.archives-ouvertes.fr/hal-00555244

S. Dauwe, J. Schmidt, and R. Hezel, Very low surface recombination velocities on p- and n-type silicon wafers passivated with hydrogenated amorphous silicon films, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002., pp.1246-1249, 2002.
DOI : 10.1109/PVSC.2002.1190834

S. Olibet, Properties of interfaces in amorphous/crystalline silicon heterojunctions, Thèse doctorat, 2009.
DOI : 10.1002/pssa.200982845

S. , D. Wolf, and G. Beaucarne, Surface passivation properties of boron-doped plasmaenhanced chemical vapor deposited hydrogenated amorphous silicon films on p-type crystalline Si substrates, Applied Physics Letters, vol.88, p.22104, 2006.

S. , D. Wolf, and M. Kondo, Abruptness of a-Si :H/c-Si interface revealed by carrier lifetime measurements, Applied Physics Letters, vol.90, p.42111, 2007.

M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda et al., Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer), Japanese Journal of Applied Physics, vol.31, issue.Part 1, No. 11, pp.3518-3522, 1992.
DOI : 10.1143/JJAP.31.3518

S. De-wolf, S. Olibert, and C. Ballif, « Stretched-exponential hydrogenated amorphous silicon crystalline silicon interface recombination decay, Applied Physics Letters, vol.93, issue.1, 2008.

M. Page, E. Iwaniczko, Y. Xu, L. Roybal, F. Hasoon et al., Amorphous/crystalline silicon heterojunction solar cells with varying i-layer thickness, Thin Solid Films, vol.519, issue.14, pp.4527-4530, 2011.
DOI : 10.1016/j.tsf.2011.01.293

R. A. Street, Hydrogenated amorphous silicon. Cambridge Solid State Science Series, 1991.

J. Kleider, Y. Soro, R. Chouffot, A. Gudovskikh, P. Roca-i-cabarrocas et al., High interfacial conductivity at amorphous silicon/crystalline silicon heterojunctions, High interfacial conductivity at amorphous silicon/crystalline silicon heterojunctions, pp.2641-2645, 2008.
DOI : 10.1016/j.jnoncrysol.2007.09.087

URL : https://hal.archives-ouvertes.fr/hal-00322289

J. Kleider and A. S. Gudovskikh, Determination of the conduction band offset between hydrogenated amorphous silicon and crystalline silicon from surface inversion layer conductance measurements, Applied Physics Letters, vol.92, issue.16, p.162101, 2008.
DOI : 10.1063/1.2907695

URL : https://hal.archives-ouvertes.fr/hal-00350871

W. Favre, M. Labrune, F. Dadouche, A. S. Gudovskikh, P. Roca-i-cabarrocas et al., Study of the interfacial properties of amorphous silicon/n-type crystalline silicon heterojunction through static planar conductance measurements, physica status solidi (c), vol.7, pp.1037-1040, 2010.
DOI : 10.1002/pssc.200982800

T. F. Schulze, L. Korte, F. Ruske, and B. Rech, Band lineup in amorphous/crystalline silicon heterojunctions and the impact of hydrogen microstructure and topological disorder, Physical Review B, vol.83, issue.16, p.165314, 2011.
DOI : 10.1103/PhysRevB.83.165314

L. Korte and M. Schmidt, Doping type and thickness dependence of band offsets at the amorphous/crystalline silicon heterojunction, Journal of Applied Physics, vol.109, issue.6, p.63714, 2011.
DOI : 10.1063/1.3559296

O. A. Maslova, J. Alvarez, E. V. Gushina, W. Favre, M. E. Gueunier-farret et al., Observation by conductive-probe atomic force microscopy of strongly inverted surface layers at the hydrogenated amorphous silicon/crystalline silicon heterojunctions, Applied Physics Letters, vol.97, issue.25, p.252110, 2010.
DOI : 10.1063/1.3525166

URL : https://hal.archives-ouvertes.fr/hal-00557102

W. Fuhs, K. Niemann, and J. Stuke, « Heterojunctions of amorphous silicon and crystalline single cristals, Tetrahedrally bonded amorphous semiconductors, pp.345-350, 1974.

K. Ojuda, H. Okamoto, Y. Hamakawa, and . Si, Amorphous Si/Polycrystalline Si Stacked Solar Cell Having More Than 12% Conversion Efficiency, Japanese Journal of Applied Physics, vol.22, issue.Part 2, No. 9, pp.605-607, 1983.
DOI : 10.1143/JJAP.22.L605

T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, Development status of high-efficiency HIT solar cells, Solar Energy Materials and Solar Cells, vol.95, issue.1, pp.18-21, 2011.
DOI : 10.1016/j.solmat.2010.04.030

K. V. Maydell, E. Conrad, and M. Schmidt, Efficient silicon heterojunction solar cells based onp- andn-type substrates processed at temperatures <???220??C, Progress in Photovoltaics : Research and applications, pp.289-295, 2006.
DOI : 10.1002/pip.668

M. Bivour, C. Meinhardt, D. Pysch, C. Reichel, K. Ritzau et al., « N-type silicium solar cells with amorphous/crystalline silicon heterojunction rear emitter, Proceedings of 35 th PVSC, 2010.

T. Desrues, Développement de cellules photovoltaïques à hétérojonctions silicium et contacts en face arrière, Thèse doctorat, Institut National des Sciences Appliquées de Lyon, 2009.

D. Diouf, Cellules photovoltaïques silicium à hétérojonctions et à structure interdigitée en face arrière, Thèse doctorat, 2010.

M. A. Green, Crystalline silicon solar cells, 2001.

M. Taguchi, E. Maruyama, and M. Tanaka, Temperature Dependence of Amorphous/Crystalline Silicon Heterojunction Solar Cells, Japanese Journal of Applied Physics, vol.47, issue.2, pp.814-818, 2008.
DOI : 10.1143/JJAP.47.814

D. Diouf, Cellules photovoltaïques silicium à hétérojonctions et à structure interdigitée en face arrière, Thèse doctorat, 2010.

A. Kanevce and W. K. Metzger, The role of amorphous silicon and tunneling in heterojunction with intrinsic thin layer (HIT) solar cells, Journal of Applied Physics, vol.105, issue.9, p.94507, 2009.
DOI : 10.1063/1.3106642

W. Favre, J. Kleider, D. Muñoz, S. Martin-de-nicolás, and P. Ribeyron, Spatially resolved lifetime measurements of silicon heterojunctions from the modulated photoluminescence technique, physica status solidi (c), vol.8, issue.3, pp.775-778, 2011.
DOI : 10.1002/pssc.201000286

URL : https://hal.archives-ouvertes.fr/hal-00555244

J. Kleider, J. Alvarez, A. Ankudinov, A. Gudovskikh, E. Gushchina et al., Characterization of silicon heterojunctions for solar cells, Nanoscale Research Letters, vol.6, issue.1
DOI : 10.1186/1556-276X-6-152

URL : https://hal.archives-ouvertes.fr/hal-00555254

W. Favre, J. Kleider, D. Muñoz, S. Martin-de-nicolás, and P. Ribeyron, Spatially resolved lifetime measurements of silicon heterojunctions from the modulated photoluminescence technique, physica status solidi (c), vol.8, issue.3, 2010.
DOI : 10.1002/pssc.201000286

URL : https://hal.archives-ouvertes.fr/hal-00555244

W. Favre, J. Kleider, M. Labrune, P. Roca-i-cabarrocas, and T. Schutz-kuchly, Optical and electrical characterization of silicon heterojunction with n-type multicrystalline substrate : towards a low cost solar cell, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00555248

W. Shockley and W. Read, Statistics of the Recombinations of Holes and Electrons, Physical Review, vol.87, issue.5, p.835, 1952.
DOI : 10.1103/PhysRev.87.835

R. Koropecki, J. Schmidt, and R. , Density of states in the gap of amorphous semiconductors determined from modulated photocurrent measurements in the recombination regime, Journal of Applied Physics, vol.91, issue.11, p.8965, 2002.
DOI : 10.1063/1.1469695

M. E. Gueunier-farret, Alliages Silicium-Germanium polymorphes en couches minces pour applications photovoltaïques, Thèse doctorat, 2002.

H. Oheda, Phase???shift analysis of modulated photocurrent: Its application to the determination of the energetic distribution of gap states, Journal of Applied Physics, vol.52, issue.11, p.6693, 1981.
DOI : 10.1063/1.328619

R. Brüggemann, C. Main, J. Berkin, and S. Reynolds, An evaluation of phase-shift analysis of modulated photocurrents, Philosophical Magazine Part B, vol.62, issue.1, p.29, 1990.
DOI : 10.1080/13642818808218383

R. A. Sinton and A. Cuevas, Contactless determination of current???voltage characteristics and minority???carrier lifetimes in semiconductors from quasi???steady???state photoconductance data, Applied Physics Letters, vol.69, issue.17, p.2510, 1996.
DOI : 10.1063/1.117723

A. Cuevas, R. Sinton, and M. Stuckings, Determination of recombination parameters in semiconductors from photoconductance measurements, 1996 Conference on Optoelectronic and Microelectronic Materials and Devices. Proceedings, 1996.
DOI : 10.1109/COMMAD.1996.610047

K. R. Mcintosh, J. Guo, M. D. Abbott, and R. A. , Bardos, « Calibration of the WCT-100 photoconductance instrument at low conductance, Progress in Photovoltaics : Research and Applications, pp.279-287, 2008.

K. R. Mcintosh, M. D. Abbott, R. A. Bardos, P. I. Widenborg, and A. G. , Aberle, « Photoconductance measurements on thin-film crystalline silicon p-n diodes, 25th European Photovoltaic Solar Energy Conference, 2010.

R. Lago-aurrekoetxea, I. Tobias, C. Del-cañizo, and A. Luque, Lifetime Measurements by Photoconductance Techniques in Wafers Immersed in a Passivating Liquid, Journal of The Electrochemical Society, vol.148, issue.4, pp.200-206, 2001.
DOI : 10.1149/1.1354620

B. Chhabra, S. Bowden, R. L. Opila, and C. B. , High effective minority carrier lifetime on silicon substrates using quinhydrone-methanol passivation, Applied Physics Letters, vol.96, issue.6, p.63502, 2010.
DOI : 10.1063/1.3309595

K. Schick, E. Daub, S. Finkbeiner, and P. Würfel, Verification of a generalized Planck law for luminescence radiation from silicon solar cells, Applied Physics A : Solids and Surfaces, pp.109-114, 1992.
DOI : 10.1007/BF00323895

W. Fuhs, L. Korte, and M. Schmidt, « Heterojunctions of hydrogenated amorphous silicon and monocrystalline silicon, Journal of Optoelectronics and Advanced Materials, vol.8, pp.1989-1995, 2006.

R. Brüggemann and S. Olibet, Analysis of electrouminescence from silicon solar cells, Energy Procedia, pp.19-26, 2010.