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Abstract 

 

This thesis proposes a novel method for generating continuum spectra with possible 

applications in WDM access networks. This new method would allow the 

development of a simple continuum laser structure with better performances in terms 

of cost and complexity than those of present supercontinuum sources. In this aim, we 

will analyze the possibility to broaden the resonant modes of a Fabry-Perot cavity by 

operating only on the design of one of the cavity’s mirrors. The design of the mirror 

is realized in accordance to a desired reflectivity spectrum. This is made possible by 

the use of Bragg gratings, for which different synthesis methods have already been 

developed throughout the literature. First we have considered the conditions which a 

Bragg grating must satisfy in order to broaden the resonant modes of a resonant 

cavity. We then simulated the resonant spectra of all simple linearly chirped Bragg 

gratings (LCBG) in search for one satisfying those conditions. After having only 

negative results with the linearly chirped gratings, we have decided to generate our 

own gratings by a synthesis method, namely the genetic algorithm. An active 

medium is then added inside the cavity formed with such a synthesized grating and 

its behavior below threshold is simulated. The cavity spectra thus obtained are 

continuum over 5-15nm. 

Some experiments will also be described, but the cavities concerned were not formed 

by genetic gratings, but with the LCBGs delivered at the beginning of the project. 

The experiments confirmed the simulations on LCBGs and they were further directed 

towards finding additional uses for this type of gratings. In function of their support 

medium, two types of LCBGs have been used: fiber gratings and semiconductor 

gratings. Two classes of applications found for the resonant cavities thus formed 

between LCBGs were tunable lasers and resonant amplifiers.  
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Résumé de la thèse 

 

1. Introduction 

La thèse dont le résumé est présenté dans ce-texte a débuté dans le cadre du projet 

appelé Continuum, ayant comme but la création d’un laser à résonance élargie. Ce 

laser était imaginé comme une cavité Fabry Perot (FP) dans laquelle on remplace au 

moins une des miroirs avec un réflecteur de Bragg spécial, dont le rôle est d’élargir 

les modes de la cavité. Dans le haut de la Fig. 1 on a fait une comparaison entre la 

structure d’une cavité FP et la structure imaginée au début du projet Continuum pour 

un laser à modes élargis. En bas, une comparaison est faite entre leurs spectres idéals. 

Le premier type de réflecteur de Bragg considéré capable d’élargir les modes 

résonantes d’une cavité était le réseau de Bragg à pas linéairement variable (LCBG – 

Linearly Chirped Bragg Grating). Avant de présenter les résultats des simulations 

sur ce type de réflecteur dans le but de créer un laser continu (section 3) on va 

d’abord présenter dans la section suivante l’utilité d’avoir un tel laser.  

Dans la section 4 on va changer notre approche sur le type de réseau de Bragg 

employé et on va tenter d’élargir les modes résonantes d’une cavité avec des réseaux 

Fig. 1 Comparaison entre une cavité Fabry-Perot (et ses modes résonantes) et une cavité Continuum 
(et son mode élargi) 
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à périodes aléatoires. La section 5 décrira quelques nouvelles applications réalisées 

avec les LCBG de la section 3. Chaque section dans ce résumé corresponde à un 

chapitre entier du manuscrit original. 

 

2. Supercontinuum 

La conception d’une cavité à résonance élargie est le premier pas pour développer 

une alternative aux lasers supercontinuum (SC). Les SC sont des sources de lumière 

caractérisées par  des émissions spectrales larges et très intenses. Ils ont été 

découverts pour la première fois dans les années 1970 par Alfano, après avoir injecté 

un faisceau laser très puissante et ultrarapide dans un cristal fortement non-linéaire. 

Le faisceau obtenu à la sortie gardait les propriétés modales du laser source utilisé 

pour sa création, mais il avait le spectre fortement élargie. Une comparaison entre les 

spectres d’un SC typique et celui du laser source est montrée dans la Fig. 2.  

La physique cachée derrière la génération d’un SC n'est pas simple. En fait, sous le 

nom de «supercontinuum» nous comprenons aujourd'hui un grand nombre de 

phénomènes non linéaires qui interagissent de façon complexe et qui continuent 

 
Fig. 2 Comparaison entre un spectre d’un supercontinuum typique et le spectre du laser source 
utilisé pour sa génération 
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d’être toujours l'objet de recherches scientifiques - quelques décennies après la 

découverte du premier SC.  

Grâce à leurs spectres uniques, les sources supercontinuum ont été largement 

utilisées dans de nombreuses applications pendant les dernières décennies, ce qui a 

fait d'eux l’objet d’une attention croissante de la communauté scientifique. Une liste 

des applications de recherche nécessitant l'utilisation de sources SC comprend la 

diffusion Raman inverse, la recherche des processus de vision, des mécanismes de 

transfert d'énergie dans la photosynthèse et la liste continue.  

Le manuscrit de cette thèse fait une description succincte des quatre plus importantes 

applications d’un SC : la tomographie par cohérence optique (OCT), la compression 

des pulses ultrarapides,  la métrologie des fréquences optiques et dans les 

télécommunications par multiplexage en longueur d’onde (WDM). Une 

représentation schématique de la manière dont un supercontinuum peut être utilisé 

dans un système WDM est représentée dans la Fig. 3. Au lieu d'utiliser une source 

laser différente pour chaque utilisateur, une approche consistant à utiliser une source 

laser SC unique qui est ensuite découpée en plusieurs parties par des filtres optiques 

est préférée en raison de sa plus grande fiabilité. Après découpage, chaque longueur 

d’onde est modulée en amplitude avec l'information utile et ensuite envoyée à un 

multiplexeur WDM avant que l’information soit transmise sur la fibre optique vers 

 
Fig. 3 Schéma de la façon dont une source supercontinuum pourrait être employée dans les 
applications de télécommunications type WDM. 
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les utilisateurs. 

Malgré leur capacité inégalée à produire une grande largeur de bande à haute 

puissance, des sources SC ont aussi leurs limites. Leur plus gros problème est leur 

coût prohibitif. Comparant les composants d’un SC, on s’aperçoit que le laser source 

de puissance élevée est de loin l'élément le plus coûteux de l'installation. Même si 

avec l'avènement des SC sur fibre optique les exigences relatives à la source de 

pompage ont été diminuées en termes de vitesse et de puissance, il va exister toujours 

une demande pour des sources SC moins chères. Cela est particulièrement vrai 

lorsque le coût de la source est divisé entre un petit nombre de ménages, comme dans 

le cas des petits réseaux locaux, comme par exemple les réseaux WDM d'accès.  

Un autre inconvénient des sources SC est leur grande taille et la complexité de 

l'installation. En ce qui concerne cet aspect, c’est également la source de pompage 

qui est l'élément le plus gênant. Historiquement, la source de pompage la plus 

utilisée pour la génération de SC étais un laser Ti: saphir. Plus tard, les SC fibrés 

étaient excités à l'aide des pompes laser à fibre dopée avec Er3+ et Yb3+, qui étaient 

moins chers et moins encombrant que le laser type Ti: saphir. 

Un dernier inconvénient de la source SC est sa complexité théorique, puisque une 

partie des phénomènes qui sont à la base de la génération SC sont toujours étudiés 

aujourd'hui. Cela rend les simulations thermodynamiques du SC un véritable défi, et 

par conséquent les simulations numériques utilisées dans la conception d'une telle 

source laser aussi difficiles. 

En raison de son prix élevé lorsqu'il est utilisé dans des applications à petite échelle, 

comme dans le cas des réseaux locaux déjà mentionnés, certaines alternatives moins 

chères aux SC ont été recherchées. Pour montrer la difficulté de trouver une telle 

alternative au supercontinuum, une comparaison est faite dans la Fig. 4 entre les 

spectres des différentes sources de lumière.  

Pour chaque source, seule la puissance utile (la fraction du rayonnement émis qui 

pourrait être dirigée dans une fibre optique) a été examinée. Tout d'abord, il y a la 

lampe à arc à xénon, qui imite très bien le spectre naturel du soleil et qui est utilisée 

dans différents types de dispositifs de projection. Mais la divergence de son faisceau 

rend la puissance utile de cette lampe loin de la distribution d'énergie d'une source 
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SC. Au contraire, la lumière dirigée émise par un laser He-Ne possède une puissance 

utile très élevée, mais une bande passante très étroite. 

Les deux seules sources qui peuvent remplacer efficacement une source SC dans les 

applications à petite échelle sont la diode super-luminescente (SLED) et la source à 

l'émission spontanée amplifiée (ASE). Toutes les deux fonctionnent sur le même 

principe lié à la génération et à l'amplification de la lumière spontanée sous le seuil 

laser. La différence entre eux est que les SLED sont des diodes à semi-conducteurs 

ayant une structure similaire à celle d'un laser Fabry-Perot, fonctionnant sous le seuil 

en raison de leur manque de feed-back, tandis que l'émission spontanée dans les 

sources ASE est réalisée sur une fibre dopée.  

Au cours des dernières années, les sources lumineuses incohérentes comme les 

SLED et les ASE ont eu un certain succès en remplacement du SC dans les réseaux 

WDM petits en raison de leur faible prix. Premièrement, leur bande passante est 

suffisamment grande pour couvrir toute la bande C (1530-1565nm). Deuxièmement, 

leur pouvoir pourrait être amplifié dans la fibre à des valeurs satisfaisantes en 

utilisant différents types d'éléments dopants. Mais ces sources ont aussi leur 

Fig. 4 Comparaison entre les spectres des différents types de sources lumineuses: He-Ne (laser 
hélium-néon); lampe au xénon; Source ASE (source à l'émission spontanée amplifiée); SLED (diode 
super-luminescente); Supercontinuum. Pour chaque source, seule la puissance utile a été considéré 
(le niveau de puissance généré, qui peut être couplé sur une fibre optique) 
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inconvénient qui découle de leur niveau d'incohérence. Leur bruit optique se traduit 

par un taux d'erreur binaire plus élevé (BER) par rapport à celle d'une source SC. 

Dans la recherche d’alternatives moins coûteuses pour le SC, il peut être envisagé 

qu'une source idéale conçue uniquement pour les petits réseaux WDM d’accès 

devrait générer un rayonnement cohérent puissant avec une bande passante continue 

juste assez large pour couvrir entièrement une bande de télécommunications. Le 

manuscrit de cette thèse va se concentrer sur la recherche d’une telle alternative, en 

n’utilisant que des phénomènes linéaires. 

 

3. Réseaux à pas linéairement variable 

Un réseau à pas linéairement variable (LCG) peut être considéré comme une série de 

très petits réflecteurs de Bragg uniformes ayant des périodes qui varient linéairement 

le long de l'axe du réseau. Mathématiquement, cela peut être écrit comme: 

kk zC  0  (3.1) 

Dans l'équation (3.1) Λk est la période du k-ième réflecteur de Bragg dans le réseau, 

C c’est le chirp du réseau et zk est la position de début du k-ième réflecteur de Bragg 

le long de l'axe du réseau. Pour un LCG le chirp C est une quantité constante, et il 

détermine la rapidité de variation de la période de Bragg au long de l’axe. 

Considérant que chaque réflecteur uniforme de Bragg a une seul période, alors le 

LCG (qui est la série de tous ces réflecteurs) va avoir une variation d’indice de 

réfraction comme dans la Fig. 5. Ce type de réseau sera utilisé en suite dans nos 

simulations. Le but des simulations est de trouver un réseau comme celui affiché 

 
Fig. 5 Variation de l'indice de réfraction (axe des y) d'un réseau à pas linéairement variable réalisé sur 
fibre. Ce réseau a le chirp C=0,04 et le coefficient de couplage k=80cm-1. 
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dans la Fig. 5 qui peut être employé pour l’élargissement des modes résonant d’une 

cavité FP. L’élargissement des modes par de tels réseaux semble théoriquement 

possible si on regarde la Fig. 6. On voit sur cette figure qu’une cavité résonante 

passive est formée entre un miroir métallique à gauche et un LCG à droite.  

A gauche de la cavité dans la Fig. 6, toutes les longueurs d'onde de rayonnement se 

réfléchissent au même endroit, sur le miroir métallique. Au contraire, dans la partie 

droite de la cavité, chaque longueur d'onde est réfléchie à un emplacement diffèrent 

sur le réseau. Les longueurs d'onde plus petites sont réfléchies au début du réseau, 

correspondant à l'endroit où sont situées les petites périodes de réseau, tandis que les 

longueurs d'onde plus grand se réfléchissent plus loin à l'intérieur du réseau de Bragg. 

Ceci est dû au fait que chaque paire de couches formant une période (une couche 

ayant un indice de réfraction faible, l'autre ayant un indice de réfraction élevé) a une 

longueur d'onde correspondante qu'elle réfléchit plus que les autre longueurs d'onde, 

en vertu de sa similitude avec un réseau de Bragg uniforme. 

Pour établir la condition mathématique nécessaire à réaliser l’élargissement modale 

d’une cavité avec un LCG, il faut maintenant regarder la Fig. 7. Dans cette figure, M1 

est un miroir diélectrique simple, introduisant une différence de phase de ± π après 

réflexion qui, étant indépendante de la longueur d'onde, peut être négligée dans les 

calculs ultérieurs. Dans la même figure, le décalage de phase aller-retour a été séparé 

en deux termes, un correspondant au chemin optique à travers la cavité (φFP) et 

l'autre à la longueur du trajet moyen du rayonnement dans le réseau de Bragg (φBG). 

Dans une cavité résonante la somme des deux est un multiple de 2π pour chaque 

longueur d'onde Ȝ correspondant à un maximum d'émission (condition de résonance). 

Dans le cas d’élargissement de modes, φBG devrait avoir une telle valeur pour que le 

changement total de la phase aller-retour (φFP + φBG) reste un multiple de 2π sur une 

 
Fig. 7 Représentation d'une cavité résonnante réalisée avec un LCG, dans laquelle le décalage de 
phase aller-retour totale a été divisé entre le réseau de Bragg (φBG) et le reste de la cavité (φFP).  
Fig. 6 Représentation des chemins optiques à l'intérieur d'une cavité Continuum: différentes longueurs 
d'onde parcourent différents chemins optiques, en fonction de la position dans le LCG où leur 
réflexion a lieu.  
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large bande spectrale. En autres mots, la variation de φBG devrait annuler la variation 

naturelle de φFP avec Ȝμ 

. dddd FPBG 
 (3.2) 

Si (3.2) est vraie pour une bande spectrale assez grande, notre structure va montrer 

un comportement de continuum. Au lieu d'utiliser des dérivées de phase, l'équation 

(3.2) peut s'écrire en utilisant une autre grandeur physique appelée le délai de groupe 

(GTD) qui dans certains cas a une interprétation plus intuitive. Le GTD est une 

grandeur caractérisant les systèmes optiques et a une forme mathématique définie par 

(3.3), où φ est le déphasage introduit par la propagation à travers la structure.  

Selon l'endroit où la différence de phase est mesurée par rapport à l'onde incidente, il 

peut y avoir un GTD correspondant à la transmission à travers la structure, et un 

autre GTD correspondant à la réflexion. Parce que tous les réseaux abordés dans le 

manuscrit fonctionnent comme des miroirs, ce qui sera important pour nous est le 

GTD correspondant à la réflexion sur les réseaux, noté GTDBG. 

 ddcGTD  )2(2

 
(3.3) 

Le temps de retard de groupe (GTD) d'un rayonnement Ȝ réfléchis sur un réseau est 

proportionnel à dφ/dȜ comme indiqué en (3.3). On déduit de (3.2) que le GTD du 

réseau doit avoir la même valeur absolue et un signe opposé par rapport au GTD de 

la cavité. Cette condition doit être vraie quel que soit le formalisme de phase adopté. 

Dans les simulations numériques par la méthode des matrices de transfert (TMM), le 

décalage de phase d'un rayonnement Ȝ après sa propagation sur une distance z à 

travers un milieu d'indice de réfraction n est considéré égal à: 

.nz/2 - = (z) 
 (3.4) 

Dans ce formalisme de phase, le GTDFP de la cavité est toujours positif. Il découle de 

 
Fig. 7 Représentation d'une cavité résonnante réalisée avec un LCG, dans laquelle le décalage de 
phase aller-retour totale a été divisé entre le réseau de Bragg (φBG) et le reste de la cavité (φFP). 
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(3.2) que le GTDBG du réseau de Bragg (simulée par TMM) devrait avoir en 

conséquence un signe négatif dans la bande spectrale souhaitée, si on garde le même 

formalisme de phase (3.4) partout dans les calculs: 

.0BGGTD
 (3.5) 

Le but des simulations présentées par la suite est de trouver un LCG ayant un temps 

de retard de groupe négatif. Pour trouver cela on a fait varier trois paramètres 

différents du LCG, dans le but de couvrir l’espace entier des LCG 

technologiquement réalisables. 

Tout d’abords, considérons dans la Fig. 8 l'influence du chirp sur le GTD d'un 

LCFBG de longueur L=1cm. Dans la même figure, les valeurs des réflectivités 

correspondantes sont tracées en bleu. Les deux graphiques séparées correspondent à 

deux valeurs limites du coefficient de couplage. En haut, il y a le cas d'un réseau 

avec un coefficient de couplage k élevé. Un tel réseau se caractérise par une 

réflectivité de 100% pour des chirps allant jusqu’à 20nm/cm. La réflectivité (ligne 

bleue) descende au-dessus de cette valeur du chirp. En raison de moins de périodes 

de Bragg capables de réfléchir une longueur d'onde Ȝ, la somme des réflexions 

distinctes pour cette longueur d'onde diminue. En ce qui concerne le GTD, les 

réseaux à faible chirp ont de nombreuses périodes de Bragg une après l'autre reflétant 

le même intervalle de bande spectrale. Cela signifie que la longueur d'onde située au 

centre de cet intervalle spectral ne se déplace pas beaucoup dans le réseau, étant 

réfléchie au tout début du réseau. Cette réflexion est similaire à celle provenant d'un 

miroir solide placé près du début du réseau, entraînant une valeur proche de zéro 

pour le GTD. Avec l'augmentation du chirp et donc de la largeur de bande, les 

premières périodes du réseau vont commencer à réfléchir de moins en moins la 

longueur d'onde correspondante au centre de cet intervalle spectrale. Cela permettra 

au rayonnement ayant cette longueur d'onde de pénétrer dans le réseau de plus en 

plus, ce qui augmente la valeur du GTD. Cette augmentation va cesser quand le chirp 

permettra à la radiation centrale d’atteindre le centre du réseau et d’être réfléchie à 

une position effective zeff = L / 2. Augmenter le chirp encore plus au-delà de cette 

valeur ne modifiera pas le GTD correspondant à cette longueur d'onde centrale. En 

regardant la Fig. 8(b) une forte diminution de la réflectivité comparée au cas 

précédent peut être constatée, ce qui est dû au faible coefficient de couplage utilisé. 
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En raison de cette faible réflectivité, la longueur d'onde centrale parvient à atteindre 

tout l'ensemble des périodes de Bragg du réseau, même quand le chirp du réseau est 

faible. La coordonnée efficace (moyenne pondérée) de la réflexion est très proche de 

zeff ≈ L / 2. Lorsqu’on augmente le chirp, la bande de réflexion augmente autour de la 

longueur d'onde centrale, mais le nombre de périodes capables de réfléchir cette 

longueur d’onde centrale diminue de manière correspondante. A forts chirps, seule la 

période de Bragg centrale situé à ze f f=L/2  reflétera sa longueur d'onde 

 
 
Fig. 8 Influence du chirp sur le temps de retard de groupe (GTD) d'un LCFBG de longueur L = 1 cm 
et coefficient de couplage de: a. k = 100cm-1 et b. k = 1 cm-1. Le GTD est représenté en noire et la 
réflectivité en bleue. Toutes les valeurs sont calculées pour Ȝ = 1550 nm au centre de la bande de 
réflexion du réseau. 
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correspondante, de manière similaire à ce qui a été décrit précédemment pour un 

réseau à coefficient de couplage élevé. Cela signifie que pour le cas des réseaux à 

chirp élevé, le coefficient de couplage a peu d'influence sur le GTD.  

Le dernier point peut également être remarqué dans la Fig. 9(a), où l'influence du 

coefficient de couplage sur le GTD est analysée dans le cas d'un LCG fibré à chirp 

élevé. Tandis que le coefficient de couplage a été multiplié par 1000, la variation du 

GTD n’a pas dépassé 0,1%. Au contraire, pour le cas d'un réseau à pas faiblement 

 
Fig. 9 Influence du coefficient de couplage k sur le temps de retard de groupe (GTD) d'un LCFBG de 
longueur L=1cm et chirp: a. C = 100nm/cm et b. C = 0,1nm/cm. Le GTD est représenté en noire et la 
réflectivité en bleue. 



PART 1 
Synopsis in French 

14 

variable, la variation du GTD avec le coefficient de couplage est très importante, 

comme le montre la Fig. 9(b). Malgré sa grande variation avec k, le GTD se 

rapproche seulement asymptotiquement de zéro et il  n'arrive pas à atteindre des 

valeurs négatives. Comme expliqué précédemment, chaque période de Bragg d'un 

réseau à chirp faible sera en mesure de réfléchir la longueur d'onde centrale de sa 

bande passante. Lorsque le coefficient de couplage est faible, le rayonnement est 

réfléchi par chaque période de l'ensemble du réseau, présentant une réflexion pour 

une coordonnée efficace (moyenne) égale à zeff ≈ L / 2. Lorsque le coefficient de 

couplage augmente, le rayonnement sera réfléchi de plus en plus par les premières 

périodes de la grille et donc sa coordonnée efficace de réflexion zeff diminue en 

conséquence. 

Le degré de précision de l'hypothèse physique présentée au début de cette section est 

testé dans la Fig. 10. Il a été considéré que pour un LCG à chirp positif les longueurs 

d'onde courtes seront réfléchies avant les plus longues, par les périodes de Bragg 

situés au début du réseau. Si cela était vrai, en inversant le réseau et créant ainsi un 

LCG à chirp négatif, les longueurs d’onde plus grandes seront réfléchies avant les 

plus courtes. La modification de la dérivé de la phase créée après ce renversement du 

réseau doit se réfléchir sur le GTD de la longueur d'onde centrale. Mais comme on le 

 
Fig. 10 Influence du signe du chirp sur le retard de groupe (GTD) d'un LCFBG de longueur L = 1cm. 
La variation du GTD avec k est étudiée pour le même réseau ayant un chirp C = 100nm/cm (noir) et 
C= -100nm/cm (bleu) respectivement. 
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remarque dans la Fig. 10, une petite différence de 1 picoseconde a été obtenue en 

faisant tourner un réseau fibré de chirp C = 100nm/cm et longueur L = 1cm. Cette 

petite différence démontre le changement de la phase supposé initialement, mais 

nous montre aussi que la valeur de cette variation n’est pas suffisante pour aboutir à 

un GTD négatif et obtenir l’effet continuum. 

La dépendance du GTD (calculée pour la longueur d'onde centrale) en fonction de la 

 
Fig. 11 Influence de la longueur du réseau sur le temps de retard de groupe (noir) et la réflectivité à la 
longueur centrale (bleu) d'un LCG fibré de chirp C=100nm/cm et coefficient de couplage k=100cm-1. 

 

 
Fig. 12 Influence du milieu du réseau sur le temps de retard de groupe (GTD) d'un LCG de longueur 
L=1cm. Le réseau intégré est représenté en bleu, tandis que le LCG fibré est en noir. Un coefficient 
de couplage de 1000cm-1 a été utilisé pour le réseau sur InP, tandis que pour le réseau fibré un 
k=100cm-1 a été utilisé. 
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longueur du réseau est représentée sur la Fig. 11. Au début, l’allure de la réflectivité 

ne semble pas très intuitive. A partir d’une certaine longueur du réseau, la réflectivité 

va commencer à diminuer avec la longueur. Cela arrive parce que nous augmentons 

le nombre de périodes en ajoutant de petites périodes de Bragg à gauche et des 

grandes périodes à droite. Les périodes de Bragg ainsi ajoutées peuvent réfléchir à 

nouveau la longueur d'onde centrale, mais cette fois en opposition de phase avec les 

périodes initiales du réseau. Quant au GTD, en augmentant la longueur, on va 

toujours pousser plus loin la position de la coordonnée efficace de réflexion zeff ≈ L /2. 

Les graphiques présentés dans cette section n'affichent les valeurs du GTD que pour 

certains cas limites de réseaux de fibre optique (chirps élevés vs chirps faibles, k 

élevé par rapport à k faible, etc). D’autres cas intermédiaires (comme pour les chirps 

et les coefficients de couplage moyens) ont été négligés à force de ne rien apporter de 

nouveau aux observations déjà faites. Les mêmes séries de simulations ont été faites 

pour le cas de réseaux sur InP sans meilleurs résultats (Fig. 12). La technologie 

intégrée apporte la possibilité d’utilisation de coefficients de couplage élevés. Grâce 

à cette propriété, des plus petites GTD vont être obtenus pour le cas de petits chirps, 

lorsque la réflexion est réalisée dans la proximité du début du réseau (zeff ≈ 0). 

Comme InP présente un indice de réfraction plus élevé par rapport au cas fibré, son 

GTD sera aussi beaucoup plus élevé lorsqu'on augmente le chirp et on permet une 

réflexion effective proche de zef f≈L/2 . Ceci est causé par une augmentation du 

chemin optique de la lumière, même si la réflexion est réalisée à la même 

coordonnée physique dans les deux milieux. 

Les discussions de cette section sur le GTD sont des analyses originales du 

comportement de la lumière dans un LCG. Malheureusement, notre objectif de 

trouver un réseau réfléchissant ayant un GTD négatif n'a pas été atteint. C'est peut-

être à cause du nombre très réduit de degrés de liberté offert par LCG, ou ça peut être 

causé par une limite physique fondamentale inhérente au processus de réflexion. 

 

4. Réseaux génétiques 

Alors que nous avons cherché une solution au problème d'un réseau à GTD négatif 

dans la section précédente, nous nous sommes limités seulement à l'espace des LCG 
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technologiquement disponibles. La dépendance du GTD en fonction de trois 

paramètres de fabrication a été calculée et expliquée. Il a été observé que, peu 

importe les paramètres utilisés, il n'a jamais été possible d'obtenir un GTD négatif 

dans le centre de la bande de réflexion d'un LCG. L'idée de cette section est d'étendre 

notre recherche indéfiniment à tout type de structure réfléchissante réalisée par la 

variation de l'indice de réfraction. Ce type de structure pour laquelle il n'existe pas de 

fonction analytique simple reliant une couche du réseau avec les autres couches sera 

appelé un réseau aléatoire. Comme le montre la Fig. 13 il peut y avoir trois types de 

réseaux aléatoires, en fonction du paramètre qui est considéré comme aléatoire. Le 

type qu’on va utiliser dans nos simulations prochaines est le premier d’entre eux, le 

réseau à épaisseur aléatoire.  

Dans le but de générer un tel réseau aléatoire, on a illustré dans le manuscrit original 

plusieurs méthodes numériques, appelées méthodes de synthèse. On a choisi 

l’algorithme génétique comme méthode préférée et on l’a adapté à notre cas 

spécifique. Cet algorithme génère automatiquement une population initiale de N 

Fig. 13 Trois exemples de différents types de réseaux aléatoires sur InP: a) à épaisseur aléatoire, dans 
lequel la largeur de chaque couche est aléatoire, b) à indice aléatoire, dans laquelle l'indice de 
réfraction de chaque couche a une valeur aléatoire, c) complétement aléatoire, dans lequel à la fois la 
largeur et l'indice de réfraction de chaque couche sont aléatoires 
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réseau ayant le même nombre de couches M et mélange leurs caractéristiques 

physiques dans le but d’obtenir un super-réseau, meilleur par rapport à tous les 

réseaux initiaux. Une description complète de notre méthode de synthèse peut se 

trouver dans le manuscrit de thèse. Dans  ce résumé on va directement passer à 

décrire les résultats obtenus par cette méthode. Tous les réseaux aléatoires obtenus 

avec un algorithme génétique on va les appeler réseaux «génétiques».  

Le premier exemple est celui d’un réseau obtenu quand l’algorithme génétique avait 

comme seul contrainte la synthèse d’un réseau à GTD négatif n’importe où dans la 

bande C (1530-1565nm). Aucune condition n’était mise sur la réflectivité. Dans ce 

cas-là un exemple typique du spectre d’un réseau génétique synthétisé est affiché 

dans la Fig. 14. Ce spectre appartient à un réseau de M=200 couches trouvé par un 

algorithme génétique après dix itérations. La population initiale utilisée par 

l'algorithme est N = 1000. On remarque que la valeur négative élevée de GTD = 

−28ps correspond à une région de réflectivité nulle. En fait, chaque fois que 

l'algorithme tente la synthèse d'un réseau à GTD hautement négative, le spectre de ce 

réseau va avoir une région correspondante de réflectivité nulle. Il devient ainsi 

 
 
Fig. 14 Spectre d'un réseau génétique obtenu après 10 itérations par un algorithme génétique qui 
cherchait un réseau de 200 couches d'InP ayant un GTD négatif. L'amplitude de la réflectivité est 
représentée en noir, tandis que le GTD est en bleu. 
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évident que les deux conditions (GTD négatif et réflectivité élevée) sont opposées. 

On a donc réécrit l’algorithme pour essayer de concilier les deux conditions 

mutuellement opposées.  

Figure 15 montre une comparaison de l’évolution de cet algorithme «conciliant» 

pour deux populations de réseaux ayant les mêmes caractéristiques générales, à 

l'exception du matériel et donc de leurs coefficients de couplage k. A la gauche de la 

Fig. 15 on a le cas des réseaux fibrés, et à la droite le cas des réseaux sur InP. La 

valeur maximale du coefficient de couplage a été utilisée dans les deux cas, ce qui 

correspond à une valeur de k = 100cm-1 pour les réseaux fibrés et à une valeur de k = 

1000cm-1 pour les structures sur InP. La valeur de fitness (appelée «fitness value» en 

anglais) exprime numériquement combien chaque réseau se rapproche des 

performances ciblées par l’algorithme génétique. La valeur fitness maximale qui est 

affichée dans les graphiques supérieurs de la Fig. 15 montre la performance du 

 
Fig. 15 Comparaison entre l'efficacité de l'algorithme génétique pour le cas de deux populations 
différentes de réseaux : (a) fibrés et (b) intégrés. Les deux populations sont composées de réseaux de 
M = 200 couches. En haut, l'évolution de la meilleure valeur de fitness en fonction du nombre de 
nouvelles générations créées par l'algorithme. En bas, les meilleurs spectres obtenus dans la dixième 
nouvelle génération. 
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meilleur réseau à chaque pas de l’algorithme. Il est tout à fait normal que cette valeur 

va augmenter avec le nombre d’itérations de l’algorithme.  

En comparant les deux graphiques en haut, il est aussi évident que la valeur 

maximale initiale de fitness (lorsque le nombre d'itérations est égal à zéro) dans la 

population InP est dix fois plus élevée que la valeur maximale de fitness initiale dans 

la population de réseaux fibrés. En comparant ensuite l'évolution de cette valeur pour 

dix générations consécutives de réseaux génétiques, il devient également évident que 

de bien meilleures performances sont obtenues en appliquant l'algorithme dans le cas 

de réseaux intégrés sur InP. Enfin, en bas de la figure, les meilleurs spectres obtenus 

à la 10ème génération sont affichés côte à côte dans les deux cas. Il est clair que ce qui 

décide en faveur des structures sur InP est leur plus grande amplitude de la réflexion 

causée par leur coefficient de couplage beaucoup plus élevé. Par contre, les valeurs 

du GTD sont très similaires dans les deux cas. Le léger avantage obtenu par le réseau 

fibré est expliqué par son coefficient de couplage inférieur. On a déjà montré dans la 

Fig. 9 qu'il existe une corrélation inverse entre le coefficient de couplage et les 

valeurs absolues du GTD. Mais en ce qui concerne notre préférence pour les réseaux 

 
Fig. 16 Variation de l'indice de réfraction du réseau génétique de 200 couches, dont le spectre a été 
tracé sur la Fig. 15(b) 
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sur InP, la grande augmentation de la réflectivité rend les pertes dans le GTD moins 

importantes.  

La structure du réseau dont le spectre a été montré dans le bas de la Fig. 15 b) est 

affichée dans la Fig. 16. On voit le caractère aléatoire des dimensions de chaque 

couche du réseau. Une autre façon de présenter le spectre de réflectivité de ce réseau 

(autre que celle utilisée en Fig. 15) est en remplaçant le GTD directement avec la 

différence de phase après réflexion, avec laquelle il est lié par l’équation (3.3). Cette 

représentation est utilisée dans la Fig. 17 (a), où la ligne bleue représente la 

différence de phase du rayonnement réfléchi de longueur d'onde Ȝ par rapport au 

rayonnement de longueur d'onde Ȝ0 = 1530nm, considéré comme référence. A titre 

de comparaison Fig. 18 (a) nous montre une représentation analogue du spectre de 

réflexion, mais pour un réseau de Bragg uniforme de 100 périodes (200 couches) 

ayant le même coefficient de couplage k = 1000cm-1.  On s’aperçoit que la phase du 

 

Fig. 17 Spectre de réflexion d'un réseau génétique de 200 couches et l'émission d'une cavité 
« continuum » utilisant ce réseau comme miroir. 
 

Fig. 18 Spectre de réflexion d'un réseau uniforme de Bragg sur InP à 200 couches (100 périodes) et 
l'émission d'une cavité résonante utilisant ce réseau comme miroir. Le coefficient de couplage du 
réseau est k=1000cm-1. 
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réflecteur de Bragg uniforme est uniformément croissante avec la longueur d'onde, 

pendant que sur le graphique du réseau génétique on voit un intervalle de ΔȜ = 8nm 

centré à 1543nm dont la phase est descendante. Cet intervalle correspond à la région 

de GTD négatif de la Fig. 15 (b). Dans les exemples évoqués ci-dessus, dix itérations 

de l'algorithme ont été considérées suffisantes, puisqu’après ce nombre de répétitions 

tous les nouveaux réseaux générés commencent à avoir une structure de couches très 

similaire. Poursuivre le calcul n'aurait pas donné des valeurs de fitness très 

différentes. 

Le réseau représenté dans la Fig. 16 est ensuite utilisé en tant que miroir dans une 

cavité résonante. Le feed-back est assuré de l'autre côté de la cavité par un miroir 

métallique à haute réflectivité ayant un coefficient de réflexion égal à R = 0,9. Pour 

une longueur spécifique de la cavité résonnante (lorsque la variation de phase de la 

cavité avec Ȝ est annulée par la variation de phase du réseau) la structure entière a un 

spectre d'émission normalisé comme celui de la Fig. 17(b). Cette longueur spécifique 

dépend de la valeur négative du GTD. Dans ce cas on a un GTD égal à −0235ps, ce 

qui correspond à une longueur calculée de la cavité résonante égale à L0 ≈ 11ȝm. 

C’est ainsi cette longueur de la cavité qu’on a utilisé pour la simulation de la Fig. 

17(b). En gardant la même longueur de la cavité mais remplacent le réseau de Bragg 

synthétisé par le réseau uniforme (UB) dont le spectre est affiché en Fig. 18 (a), le 

spectre de la cavité devient comme dans la Fig. 18(b).  

Ce qui peut également être remarqué dans la Fig. 17(b) est la cessation presque 

complète de la variation de phase entre 1539nm et 1547nm, l'intervalle dans lequel le 

GTD négatif du réseau annule la GTD positif du reste de la cavité. En d'autres termes, 

la phase aller-retour de la cavité se maintient constante sur cette bande passante de 

8nm parce que la croissance naturelle de la phase aller-retour avec Ȝ est compensée 

par une baisse similaire de la phase après la réflexion sur le réseau. Il peut être 

également observé que la région du GTD négatif s’approche des deux maxima de 

réflectivité ayant un GTD positif, ce qui produit l’élargissement de la bande spectrale 

d'émission jusqu’à une valeur de 15 nm dans la Fig. 17(b). 

Les spectres d'émission normalisés qui ont été présentés dans les Fig. 17(b) et 18(b) 

ont été simulés en dessous du seuil, considérant un milieu actif placé à l'intérieur de 

la cavité. Le milieu actif est supposé avoir une émission spontanée uniforme sur 
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toutes les longueurs d'onde. L'interférence provoquée par les allers retours 

consécutifs de cette émission à travers la cavité génère les spectres des deux figures. 

Le coefficient de gain α du milieu est considéré égal à zéro. Des différentes formes 

du coefficient de gain peuvent être imaginées pour que la petite vallée dans la Fig.  

17(b) formée dans la région du GTD négatif soit égalisée au niveau des deux 

sommets environnants.  

 

5. Mesures expérimentales 

L’idée initiale du projet était basée sur les cavités résonnantes formées avec des LCG. 

Les simulations de la section 3 ont déjà montré qu'il n'y a aucun moyen de produire 

un spectre d'émission continu en utilisant un LCG en conjonction avec une cavité 

résonante, contrairement à l'hypothèse initiale du projet. On a retrouvé plus tard dans 

 
 

 
 
Fig. 19 Schéma d'un laser accordable formé entre deux LCG. A l'intérieur de la cavité un filtre est 
utilisé pour configurer manuellement la longueur d'onde désirée. 
 

 
Fig. 20 Spectres d'émission superposées obtenues en ajustant manuellement le filtre de la Fig. 19 pour 
les différentes longueurs d'onde de la grille ITU. 
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la section 4 que seul un certain type de structure de couches aléatoires, généré par un 

algorithme génétique, a pu élargir le spectre d'émission d'une cavité Fabry-Perot. 

Malgré cette constatation ultérieure, il n'a pas été possible d'obtenir un prototype réel 

de ces réseaux synthétisés en temps voulu, et donc dans la partie expérimentale du 

projet on a essayé plutôt de trouver de nouvelles applications pour les LCG déjà 

livrés. 

On va commencer par une première application originale trouvée pour les cavités 

résonnantes construites avec des LCG. D’abord nous avons essayé d'imaginer une 

façon originale de déplacer le spectre d'émission d'une cavité résonnante. La 

structure de la Fig. 19 a ainsi été créée. Le filtre, ayant une bande passante de 1nm à 

−3dB, a comme rôle de régler manuellement la longueur d'onde émisse à toute valeur 

désirée contenue à la fois dans la bande de réflexion du réseau et aussi dans le 

domaine de fréquences du filtre. La bande de réflexion d’un réseau était typiquement 

l’intervalle 1530-1570nm, alors que le domaine de variation du filtre était composé 

de l'intervalle 1525-1565nm. L'intersection des deux sera alors le domaine spectral 

de 1530-1565nm. En faisant tourner manuellement le bouton de réglage du filtre, le 

spectre sera donc centré sur une longueur d'onde de ce dernier intervalle. Une 

superposition des spectres obtenus après les ajustements successifs du bouton du 

filtre est représentée dans la Fig. 20.  

L’écartement de fréquence entre deux pics consécutifs dans la Fig. 20 est 50GHz. 

Chaque pic a été spécialement choisi pour correspondre aux fréquences du peigne 

ITU utilisé dans les communications WDM en bande C. Chaque spectre séparé dans 

la Fig. 20 a été enregistré par un analyseur de spectre optique avec un 

échantillonnage de 1000 points dans une fenêtre d'observation de 40nm. 

Une deuxième application originale est représentée par un amplificateur résonant. 

Cet amplificateur sera constitué d'un SOA placé entre deux LCG de 50% réflectivité 

comme dans la Fig. 21. Un laser externe de différentes amplitudes et longueurs 

d'onde est injecté dans cette cavité. De l'autre côté de la cavité, le signal de sorti est 

mesuré avec un analyseur de spectre. Les résultats enregistrés sont affichés dans la 

Fig. 22. Pour le cas de la Fig. 22(a) un laser externe de 0,5 mW est utilisé à l’entrée. 

La ligne pointillée rouge indique le niveau mesuré par l'analyseur en absence de la 

cavité résonante. La cavité résonnante de la Fig. 21 est alors interposée entre le laser 
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externe accordable et l'analyseur. Le niveau du signal détecté dans ce nouveau cas 

par l'analyseur est marqué avec une ligne noire continue.  

Lorsque le laser accordable émet hors de la bande passante des réseaux de Bragg, le 

rayonnement externe va passer à travers le SOA une seule fois. Mais la région 

intéressante est représentée par la bande de réflexion des réseaux de Bragg, comprise 

entre 1530nm et 1570nm, dans laquelle le laser externe passe à travers le SOA 

plusieurs fois avant de sortir de la cavité. Dans cet intervalle, l'amplitude mesurée par 

l'analyseur semble varier considérablement dans le temps. Cette variation dans le 

temps est enregistrée par l'analyseur comme une variation avec la longueur d'onde Ȝ, 

puisque l'amplitude correspondante à chaque longueur d'onde est enregistrée pendant 

quelques secondes, avant que le laser externe émette sur une prochaine longueur 

d'onde. En effet, lorsque le laser externe est laissé à émettre sur une longueur d'onde 

choisie un temps suffisamment long, l'amplitude du signal enregistrée par l'analyseur 

va osciller de façon aléatoire entre les deux enveloppes tracées en traits noirs 

pointillés dans la Fig. 22. Entre les deux enveloppes, la ligne pointillée bleue de 

milieu montre l'amplitude du signal quand les réseaux de Bragg ne sont pas présents 

et donc le signal ne passe qu’une seule fois à travers le SOA. 

 
 
Fig. 21 Le modèle d’un amplificateur résonant utilisé dans les mesures expérimentales. Le miroir 
métallique qui bordé auparavant d'un côté la cavité a été remplacé par un second LCG. 

 
 

 
Fig. 22 Des graphiques représentant l'amplitude du laser externe en fonction de la longueur d'onde, 
après son passage à travers l'amplificateur résonant de la Fig. 21. Deux niveaux différents (marqués 
en rouge pointillé) du laser externe ont été utilisés à l’entrée d’amplificateur: a. 0,5 mW; b.10mW. 
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La cause de l'instabilité temporelle observée dans la bande de réflexion n'est pas bien 

comprise, mais elle peut être liée à la compétition des modes de la cavité laser. 

Comme le signal n'est pas assez fort pour attraper toute l'énergie des paires électron-

trou de la cavité, il va y avoir des moments quand une partie de cette énergie servira 

à amplifier l'émission spontanée du SOA qui sera reflétée dans la cavité par les 

réseaux de Bragg.  

À l'opposé, lorsqu'on augmente la puissance du laser externe à 10 mW comme dans 

la Fig. 22(b) le niveau mesuré à la sortie de la cavité n'augmente pas avec la même 

quantité par rapport au cas de la Fig. 22(a). C'est parce qu’on atteint la saturation du 

gain offert par le SOA. Dans cette situation, il n'y aura aucun avantage à utiliser une 

telle cavité résonante pour l'amplification d'un signal externe, comme l'amplitude à la 

sortie sera inférieure à l'amplitude de l'entrée (la ligne noire est sous la ligne rouge 

pour presque toutes les longueurs d'onde).  

Pour conclure cette section, une cavité résonnante construite avec des LCG peut 

considérablement amplifier un signal externe et agir comme un amplificateur 

uniquement pour de faibles niveaux de puissance injectée, sous le niveau nécessaire à 

la saturation du SOA. Dans la région du spectre correspondante à la bande de 

réflexion des réseaux de Bragg, le niveau d'amplification peut devenir 5dB supérieur 

au niveau enregistré par le SOA seul. D'autre part, l'émission spontanée réfléchie 

dans la cavité par les réseaux de Bragg sera une source d'instabilité pour cet 

amplificateur résonant. La seule façon de contrer cet effet indésirable est d'augmenter 

le niveau de la radiation à l’entrée jusqu'à ce que tous les porteurs électriques à 

l'intérieur de la cavité soient saturés. Malheureusement, cela forcera aussi une 

réduction des performances de cet amplificateur résonant jusqu’au point que ça 

rendrait son utilisation inutile. 

 

6. Conclusions  

La partie théorique de cette thèse a été axée sur la recherche de nouvelles alternatives 

simples aux sources de type supercontinuum dans les applications WDM. Le 

manuscrit détaille les idées novatrices du projet «Continuum» qui visait à créer une 

cavité résonante capable de produire un spectre continu dans toute la bande C. Dans 
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cette cavité allait l'un des réflecteurs métalliques est remplacé par un réseau à pas 

linéairement variable (LCG) ayant le rôle d'annuler ou d'élargir les modes résonant 

de la cavité.  

Le chapitre 3 du manuscrit cherche d'abord la condition nécessaire et suffisante pour 

qu'un LCG  soit capable d’agrandir les modes d'une cavité résonante. Ensuite, il 

présente une série de simulations sur tous les LCG technologiquement réalisables, 

cherchant un réseau avec les caractéristiques requises. Trois paramètres ont été testés 

dans ce but, sans un succès réel. On a trouvé que le temps de retard de groupe (GTD) 

d'un LCG est proportionnel avec le chirp et la longueur du réseau et inversement 

proportionnel à son coefficient de couplage. On a constaté que le GTD est toujours 

positif dans la bande de réflexion du LCG. Dans la littérature, ce manuscrit est la 

première étude de la variation du GTD avec les paramètres d'un LCG.  

Dans le chapitre 4 l'idée d’élargissement des modes est testée sur les réseaux ayant 

des couches aléatoires. Comme une recherche exhaustive de tous les réseaux 

aléatoires aurait été impossible, une idée originale était d'adapter une méthode de 

synthèse génétique (spécialement conçue pour des réseaux à variation continue 

d’indice) en but de synthétiser des réseaux aux couches discrètes. Nous avons décidé 

d'appliquer un algorithme génétique sur quelques petites populations initiales 

aléatoires de réseaux pour synthétiser de nouvelles structures en fonction de nos 

besoins. En termes de performances, les réseaux ainsi synthétisés étaient beaucoup 

mieux que n'importe quel autre réseau provenant de populations (même beaucoup 

plus nombreux) sur lesquelles l'algorithme génétique n'a pas été appliqué. Les 

structures sur InP se sont avérées plus performantes que les réseaux fibrés. Enfin, à la 

fin de la section dédiée à l'algorithme génétique, on a analysé l'influence d'un réseau 

génétique sur le spectre d'une cavité résonante. Un élargissement modal de l'ordre de 

15 nm a été constaté avec une structure pareille. Dans le manuscrit original, les 

résultats après avoir utilisé une deuxième méthode de synthèse ont été aussi 

présentés. Par la suite, on a tiré la conclusion que le principe de causalité peut être à 

l’origine du fait qu’un réflecteur continuum parfait ne peut jamais être construit. 

La partie expérimentale de la thèse porte sur la recherche de nouvelles applications 

pour les cavités résonantes construites avec les LCG. L'ajout d'un filtre accordable 

dans une telle cavité créera un laser accordable. Ce type d'application est le plus 
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adapté pour ces structures résonantes, comme les expériences antérieures de 

Bergonzo et al peuvent aussi le confirmer. Une cavité formée entre deux LCG a 

également été testée comme amplificateur résonant pour différents niveaux d'un laser 

externe. Pour les niveaux de puissance faibles d’un tel laser externe, l'amplification 

atteint un bon niveau mais est instable, tandis que pour les niveaux de puissance 

élevés, l'amplification est stable, mais insuffisante. 
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Chapter 1  

Introduction 

 

1.1 Optical cavities 

An optical cavity is defined as a region bounded by two or more mirrors that are 

aligned to provide multiple reflections of lightwaves [1]. Because of these reflections, 

electromagnetic radiation is made to interact with itself multiple times before exiting 

the cavity. For start, let us consider a uniform source of electromagnetic radiation 

inside the cavity. At certain frequencies - called resonance frequencies - the 

electromagnetic radiation will sustain itself after the reflections on the cavity mirrors, 

while at other frequencies it will attenuate itself correspondingly. Considering all 

frequencies of the electromagnetic spectrum, the law of conservation of energy is 

always satisfied, as each region of positive interference (for which the radiation 

amplitude increases) is surrounded by regions of negative interference (for which the 

radiation amplitude decreases). If the uniform radiation enters the cavity from the 

outside, there will be two resulting beams, one which is reflected, and the other one 

transmitted by the cavity. The same figure of resonant peaks and valleys is found 

also in the two resulting beams’ spectra, but now the law of the conservation of 

energy ensures that the peaks in the transmission spectrum correspond to the valleys 

in the reflection one and vice-versa. 

A simple schematic of an optical cavity is shown in Fig. 1, where M1, M2 are the 

metallic mirrors between which the cavity is formed. This cavity can function in a 

passive mode (as represented in Fig. 1.1) in which case it is called a Fabry-Perot 

filter. The radiation which enters the cavity from the left will be divided by the cavity 
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in two parts: one part of the light is reflected (propagating back to the left) and one 

part is transmitted (propagating outside of the cavity to the right). If we consider that 

the incident radiation has a uniform spectrum for all wavelengths, the transmitted 

radiation will have a spectrum similar to that of Fig. 1.2. The spacing (called Free 

Spectral Range – FSR) between the resonant peaks (modes) depends on the length of 

the cavity and the refractive index of the medium inside. The difference between the 

maxima and minima of transmission depends of the reflectivities of both mirrors.  

The same cavity of Fig. 1 could be used as an amplifier or a laser if an active 

medium is inserted between the mirrors. Generally speaking, an active medium is a 

type of material that emits coherent radiation or exhibits gain as a result of electronic 

or molecular transition from a higher (previously excited) state to a lower state. The 

excitation to higher energy states is realized by pumping the material with energy 

 
Fig. 1.1 Simple schematic of a passive optical cavity formed between two metallic mirrors (M1, M2). The 
light propagates between the mirrors through the core of an optical fiber. This type of structure is also 
called a Fabry-Perot cavity. 

 
Fig. 1.2 Transmission as a function of wavelength when the Fabry-Perot cavity is functioning as a 
filter with the reflectivities of the mirrors R1=R2=0.8. The distance between the mirrors is L=3cm. 
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from the exterior. Because throughout this thesis the active medium consists of a 

Semiconductor Optical Amplifier (SOA) the energy used for pumping was electrical 

in nature (represented as a current input in Fig. 1.3).  

When an external signal is injected into the structure of Fig. 1.3, the cavity is said to 

function as an amplifier. The most important quantity describing this functioning 

mode is the gain, defined as the ratio between the output and the input amplitudes of 

the signal, as a function of wavelength. The gain of such an amplifier will follow the 

spectrum shape of the passive cavity shown in Fig. 1.2, with maxima separated by 

the same Free Spectral Range (FSR). However, compared to the passive case, this 

time the maxima values are greater than 1. The maximum amplitude of the cavity 

gain depends on the reflectivities of both mirrors and the gain of the SOA alone (gain 

of the SOA placed outside the cavity). It can usually be greater than 100 (20dB). 

The structure of Fig. 1.3 can also generate its own radiation by spontaneous emission 

in the active medium. Starting with a certain threshold of the SOA current, this 

functioning regimen becomes that of a Fabry-Perot laser. The laser thus created can 

emit on multiple wavelengths, in which case it is called a multi-mode laser, or on a 

single wavelength, in which case it is called a single-mode laser. In both cases, the 

laser emission wavelengths correspond to one or more of the resonant transmission 

peaks of the passive cavity (Fig. 1.2).  

We can conclude from this section that the transmission function of the passive 

cavity influences both the gain of the amplifier and the emission spectrum of the 

laser created by adding an active medium in such a cavity. That is why this thesis 

 
Fig. 1.3 Simple schematic of an active optical cavity formed between two metallic mirrors (M1, M2). 
The active medium is a Semiconductor Optical Amplifier (SOA), which transforms the injected 
electrical energy into optical gain. 
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started with the idea that by acting on the geometry of the passive cavity alone and 

shaping its resonant modes, we will also succeed in shaping the emission spectrum of 

the corresponding laser. 

 

1.2 Thesis history 

The idea that it would be possible to shape the transmission of a filter, or the gain of 

an amplifier, or the spectrum of a laser, by acting on the geometry of their 

corresponding resonant cavities materialized in the so-called Continuum project. 

This was a 36-months ANR (Agence Nationale de la Recherche) project [2] which 

started in 2009, while I was an internship student at SUPELEC. The biggest aim of 

the project was the construction of a continuum spectrum laser which was supposed 

to have a bandwidth larger than 75nm. A comparison between such laser cavity and 

the cavity of a classical Fabry-Perot laser is shown in Fig. 1.4. At the left of this 

figure, we can recognize the same cavity presented in Fig. 1.1. Its ideal spectrum is 

schematically presented below it. To the right there is the Continuum cavity and its 

ideal resonant spectrum. Studying the figure, it can be seen that the project’s core 

idea is to act on the cavity’s geometry by replacing the metallic mirror by a chirped 

Bragg grating. As it was already said in Section 1.1, it is possible to shape the 

emission spectrum of a laser by acting on the cavity’s geometry, thus changing its 

resonant modes. By carefully choosing the right grating for a certain cavity, it was 

thought the resonant modes in the cavity could even be canceled. The spectrum 

would become single-mode with an enlarged bandwidth equal to the reflection 

bandwidth of the Bragg grating used. This type of laser would have been a cheaper 

alternative to the present Supercontinuum lasers for short range data communications. 

Other requirements of the project are listed in Table 1. The project was a conjoint 

effort between SUPELEC (SUP), Alcatel Thales III-V Lab (ATL), Institut Carnot de 

Fig. 1.4 Comparison between a Fabry-Perot cavity (with its resonant modes) and a Continuum cavity 
(with its resonant enlarged mode) 
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Bourgogne (ICB) and Institut d’Electronique de Sud (IES). SUPELEC was 

responsible with the coordination of the project and also with everything linked to 

the design of the cavity and testing of the final products. Alcatel was in charge with 

the technology and fabrication of the integrated continuum cavities, whereas ICB and 

IES were responsible with dynamic modeling of the active cavities, taking into 

account thermal and non-linear phenomena.  

A LCG, used very often in future chapters of the thesis, is similar to a uniform Bragg 

grating, except for the fact that its grating period varies linearly from one end to the 

other of the grating. As it will be later shown, none of the final objectives of the 

Continuum project was met because of some limitations imposed by fundamental 

physical laws. Nevertheless, trying to approach some of the initial requirements 

made us develop some interesting structures which we will describe later in this 

manuscript. After abandoning the initial path developed by my colleague Xunqi WU 

requiring the use of LCGs, we adopted instead the more complicated path of 

designing our own chirped Bragg gratings by numerical methods. 

 
TABLE I 

SUCCESS CRITERIA FOR THE CONTINUUM PROJECT 

Regimen Parameter Success Criteria 

Filter 
Power P > 10mW 

Bandwidth BW > 75nm 

Amplifier 

Gain G > 20dB 

Noise factor Nf < 5dB 

Bandwidth BW > 50nm 

Laser 
Power P > 10mW 

Bandwidth BW > 75nm 
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1.3 Outline 

The understanding of a large part of this manuscript will generally be available to 

anyone who has a general background in physics and mathematics. There will be 

only small sections where a more thorough knowledge of the field will be necessary.  

After this chapter’s small introduction into the subject of optical cavities and the 

working environment which permitted the finalization of this manuscript, we will 

pass to a presentation of the state of the art of the devices capable of emitting 

coherent light on a large bandwidth. These devices, the so-called Supercontinuum 

sources, or white-light lasers, will be described in the first part of Chapter 2. Their 

functioning will be explained, how they were discovered, their main applications, 

alternatives and limitations. A special emphasis will be placed on the telecom 

applications. The second part of the chapter will go deeper into the idea behind the 

Continuum project, how it originated and its basic mathematical grounds.  

Chapter 3 concentrates on the use of Linearly Chirped Gratings (LCGs) for the 

Continuum generation. After thoroughly explaining the structure and parameters of a 

LCG, we will present the results obtained after using all the technologically available 

LCGs to form resonant cavities. This chapter will also contain a more thorough 

analysis of the mathematics behind the Continuum generation and a small 

presentation of the two types of optical cavities studied in this thesis. This is needed 

to fast check if a chirped grating could be employed as a mirror to enlarge the modes 

of a Fabry-Perot cavity. Because of the negative results obtained with the LCGs, the 

necessity to design a special Bragg grating to reach our aim will be obvious at the 

end of this chapter.  

And this is exactly what we will do in Chapter 4, which will contain most of the 

innovative part of the present manuscript. Two methods for grating synthesis will 

firstly be explained, followed by some grating designs obtained after implementing 

those methods. Spectral examples will be given for both of the two types of gratings 

mentioned in Chapter 2 (fiber and integrated).  

Chapter 5 deals with the experimental part of the thesis. It explains the technology 

behind each type of cavity studied and it tries to find new applications for each. The 
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cavities studied are formed with LCGs, as this type of grating was considered 

sufficient in the initial phases of the Continuum project. In spite of their inadequacy 

for Continuum generation, it will be seen that we can still take advantage of the 

LCGs’ properties in other types of novel applications. 

Finally, Chapter 6 will summarize the ideas presented in this manuscript and will 

trace some perspective-lines regarding the future work in this field. 
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Continuum spectra 

 
 

 

 

 

 

 

This chapter describes two radically different ways for obtaining coherent continuum 

spectra. The first method, very richly studied in the scientific literature for the past 

thirty years, is depicted in Section 2.1. It is a well demonstrated method which found 

numerous applications in different domains. The other method, described in Section 

2.2, consists of an original idea sketched for the first time in the Continuum project.  
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2.1 Supercontinuum 

Till present, the most documented way to generate large-band intense light radiation 

is by what is known in the scientific literature as a “supercontinuum”. As defined by 

its discoverer, R.R. Alfano [3,4], “supercontinuum generation is the phenomenon of 

production of intense ultrafast broadband white light pulses arising after the 

propagation of intense picosecond or shorter laser pulses through condensed or 

gaseous media”. As seen from the initial definition, a supercontinuum source has 

three main characteristics: a) high intensity; b) large spectrum; c) fast pulsed. All 

three characteristics result from the way in which a supercontinuum (SC) is produced. 

It firstly needs a very powerful laser, which will act as a seed (source, pump) laser. In 

the beginnings of SC generation, the level of power needed was offered only by 

ultrafast laser pulses. Those ultrafast laser pulses were collimated and injected into a 

strong non-linear medium. After a certain propagation distance the SC appeared. 

Now going back to the three characteristics of a SC, every one of them arises from 

the premises of the SC’s generation. The first one, high intensity, is due to the fact 

that a supercontinuum still propagates as a laser. The non-linear phenomena 

responsible with the SC generation do not modify the beam geometrical properties of 

the initial seed laser, resulting in high energy densities for the SC laser as well. The 

second characteristic (a large spectrum) is what differentiates a SC from a laser. That 

is why a SC source is also called a “white-light laser”, as its spectrum can be as large 

as the spectra of incandescent sources, usually hundreds of times larger than that of 

the initial seed laser used. As for the third characteristic cited by Alfano, it is no 

more necessary for the SC sources of our day. Even though the initial definition 

implied that a supercontinuum could function only in the ultrafast pulsed regime, as 

that was the only way to generate a high intensity seed laser, with the advent of 

optical fiber SC generation, it was later seen that such a laser can be generated also in 

the continuous-wave (CW) regime, by using cascaded Raman fiber lasers [5].  

 

2.1.1 Physics 

As stated in the introductory part of section 2.1, a SC is generated after the 

propagation of a source laser through a non-linear medium. The generation of a SC 

from an optical fiber for the first time in 1976 [6] was the great step forward which 
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permitted the introduction of SC into the telecommunication industry. This discovery 

not only opened the path to a continuous-wave supercontinuum, but it also opened 

the path to the generation of very large octave-spanning SC radiation. Initially only 

strong non-linear mediums were used, but it was seen that optical fibers can also 

exhibit impressive non-linear effects because of their long interaction distances with 

the light. In Fig. 2.1 a comparison is shown between the typical spectrum of a 

supercontinuum (SC) and that of its pump source. The SC was generated by passing 

the 1064nm pulsed pump laser through a photonic crystal. A more than an octave 

frequency span is noticed. 

The physics behind the SC generation is not simple. In fact, under the name of 

“supercontinuum” we understand today a large body of non-linear phenomena which 

interact together in complicated ways and which still continue being researched in 

the present day - a few decades after the SC discovery. The four main non-linear 

phenomena involved in the first experiments of SC generation are the self-, induced-, 

and cross-phase modulations and the 4-photon parametric generation.  

Later, the generation of SC in photonic crystal fibers (PCF) brought forward other 

interesting phenomena linked to the creation of soliton-like pulses. Thus, in this type 

of media, it became possible to distinguish two different regimes of SC generation 

 
Fig. 2.1 Comparison between a typical Supercontinuum spectrum [22] and the spectrum of the seed 
(source) laser used for its generation  

 



Chapter 2 
Continuum spectra 

42 

[7]: a) an incoherent one, corresponding to the highly non-linear state obtained in the 

PCF after the injection of long and intense pump pulses; and b) a coherent regime, 

corresponding to the apparition of coherent soliton-like radiation in a PCF after it 

was pumped with long pulses in the anomalous dispersion regime. This second 

regime, which is specific to the optical fiber media, has been extensively researched 

during the last decade, as it could find useful applications in the telecom industry [8]. 

As this is only a small snapshot into the world of supercontinuum and the physical 

phenomena linked to its creation, it is no need to go into mathematical detail 

regarding the non-linear phenomena that stand at its core. For the interested, the most 

complete source of information on this subject remains the supercontinuum 

monograph of Alfano [3]. 

 

2.1.2 History 

The discovery of the supercontinuum was announced in three papers [4, 9, 10] dating 

from 1970, signed by R.R. Alfano, who is thus credited with the discovery. One of 

the experimental setups used from the beginnings for the SC generation [3] is 

schematized in Fig. 2.2. The most expensive part of this setup is the laser pump, 

which has to be an ultrafast picosecond or femtosecond pulse laser. This is usually 

obtainable only through mode-locking. In the first experiments, the pump laser was a 

mode-locked Nd:glass laser emitting at 1.06µm with a peak power of 5x109 W. What 

follows next in the schematic is a KDP crystal used for the generation of the second 

harmonic. The non-linear phenomena responsible with the SC generation in the 

target crystal were best activated for a frequency corresponding to the second 

harmonic of the pump laser. This radiation had a wavelength of 530nm and a power 

of 2x108W. After the second harmonic generation a filter can be used to remove the 

 
Fig. 2.2 Schematics of the first experimental arrangements used for the supercontinuum generation in 
the 1970s. 
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pump wavelength from the propagating beam. Before reaching the crystal, this beam 

must be reduced in size by a collimating lens and focused onto the sample at the 

maximum possible energy density. For the SC generation in the sample crystal, one 

needs at least a few µJ of energy concentrated in a pulse smaller than 100fs on a 

sample surface smaller than 1mm in diameter.  

After passing through the target crystal responsible for the SC generation, the 

intensity distribution could first be filtered and magnified before being projected on a 

spectrum analyzer.  

Supercontinuum spectra have been obtained using all kind of materials, some of 

them exhibiting only small non-linear coefficients. As solid-state examples of such 

materials we can cite the quartz, NaCl, calcite and even the semiconductor GaAs. 

The SC spectra generated by them have very large spectral widths and random 

structure [3]. For comparison, the SC spectra generated in liquids have the most 

intense and uniform distribution. As an example, the SC spectra generated in H2O 

and D2O start from around 350nm and can extend even beyond 800nm. But the 

material which found the greatest number of applications and is now used the most 

extensively for SC generation is the optical fiber. 

 

2.1.3 Applications 

Thanks to their unique spectra, supercontinuum sources have been used extensively 

in numerous applications in the past decades, a fact which has made them gather 

increasing attention from the scientific community. A list of research applications 

requiring the use of SC sources is found in the book of Alphano [3] and it includes 

inverse Raman scattering, time-resolved induced absorption, primary vision 

processes, energy transfer mechanisms in photosynthesis and the list goes on. 

In this section, four of the main applications of the supercontinuum will be revised, 

with a greater emphasis being put on the one in the telecom field. One of the most 

important applications of SC is in the field of optical coherence tomography (OCT) 

[11]. OCT is a method of imagery used for scanning inside the tissues with the help 

of the backscattered light. The retina for example can be thus scanned for macular 

degeneration. The resolution of this imagery technique depends on the spectrum 
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width of the light source, which is why a SC source is considered the best for this 

type of application.  

Another application of SC is in the field of optical frequency metrology [12]. A 

frequency comb is a radiation whose spectrum is represented by a series of discrete 

equally spaced modes. Frequency combs are used in metrology to precisely measure 

optical frequencies very much like a vernier measures small distances. They can also 

be used to enhance the precision of atomic clocks from the microwave to optical 

domain, making them reach time precisions of 10-17. But a frequency comb, which is 

usually created with mode-locked lasers, is useful only if it has a frequency span 

larger than one octave. It is in this stage that a SC is required when pumped by a 

mode-locked laser, as it can generate a spectral comb larger than two octaves. 

Another field of application for the supercontinuum is the ultrafast pulse 

compression [13]. When the ultrafast radiation coming from a mode-locked laser is 

transformed into a white light source by enlarging its frequency bandwidth, a 

compression into the time domain simultaneously happens, as frequency and time are 

conjugate variables – one is the Fourier transform of the other. This allows for the 

short duration pulses of the mode-locked laser to be shortened even more. It is 

believed that durations under 1fs will be soon achieved with this technology. This 

application is very useful for probing physical, chemical and biological phenomena 

which have a life-time in the femtosecond domain. It can also study picosecond-

 
Fig. 2.3 Schematics of the way in which a supercontinuum source could be emplyed in WDM 
telecommunications 
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phenomena with better resolution than it was ever-before possible. 

Finally, the application of the SC which is in direct connection with the subject of 

this thesis is in the WDM telecommunications field [14-16]. A schematic 

representation of the way in which a supercontinuum can be used in WDM is shown 

in Fig. 2.3. Instead of using a different laser source for each user, an approach of 

using a single continuum laser source which is later sliced in different parts by 

optical filters is preferred because of the greater fiability. After slicing, each 

individual channel is modulated in amplitude with the useful information and then 

sent to a WDM multiplexer before being transmitted over the optical fiber to the 

users. 

 

2.1.4 Limitations 

Despite their unmatched ability to generate large-bandwidth high-power radiation, 

SC sources also have their limitations. Their biggest draw-back is their prohibitive 

cost. Comparing the components of a typical SC arrangement (Fig. 2.2) as to their 

cost, it is the mode-locked ultrafast high power pump source that is by far the most 

expensive component of the setup. Even if with the advent of optical fiber SC the 

requirements for the pump source have been relaxed in terms of speed and power, 

there is still a demand for cheaper SC sources. This is especially true whenever the 

cost of the source is divided between small numbers of households, as it is in the case 

of small local networks, like WDM access area networks. The alternatives of SC 

sources for this small type of networks will be discussed in the next section. 

Another draw-back of SC sources is their size and setup complexity. Regarding this 

aspect also, it is the pump source that is the most bothersome component. 

Historically, the mode-locked pump source most used for SC generation is a 

Ti:sapphire laser. Later, fiber SC lasers were excited using Er3+ and Yb3+ doped fiber 

laser pumps, which were cheaper but not necessarily smaller alternatives to the 

Ti:sapphire laser. 

A last disadvantage of the SC is its theoretical complexity, as some of the phenomena 

which are at the base of SC generation are still under research today. This makes 
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thermodynamic simulations of the SC a real challenge, and so are the numerical 

methods for the design of a white-light laser source. 

 

2.1.5 Alternatives 

Because of their high price when used in small-scale applications, as it is in the 

already mentioned case of local area networks, some cheaper alternatives to SC 

sources have been searched. To show the difficulty of choosing for such an 

alternative to supercontinuum, a comparison is made in Fig. 2.4 between the spectra 

of different light sources. For each source, only the useful power (the fraction of the 

emitted radiation which could be directed into an optical fiber) was considered. 

Firstly, there is the classical Xenon arc lamp, which mimics very well the natural 

spectrum of the sun and is used in different kind of projection devices. Even if it was 

considered not long ago a bright source of radiation, its beam divergence makes its 

useful power to be nowhere near the power distribution of a SC source. On the 

contrarily, the strictly directed light emitted by a He-Ne laser has a very high useful 

power, but a very narrow bandwidth.  

The only two sources that can effectively replace a SC source for small scale 

applications are the Superluminescent diode (SLED) and the Amplified Spontaneous 

Emission (ASE) source. Both of them are functioning on the same principle of 

under-threshold spontaneous light generation and amplification. Whereas SLEDs are 

semiconductor-based diodes with a similar structure to that of a Fabry-Perot laser, 

functioning under threshold because of their insufficient feed-back, the spontaneous 

emission in ASE sources is realized on doped fiber.  

During recent years incoherent light sources like SLEDs and ASE sources did have 

some success in replacing SC in small WDM area networks because of their low 

price [17, 18]. Firstly, their bandwidth is large enough for covering the whole band C 

(1530-1565nm). Secondly, their power could be amplified into the fiber to 

satisfactory values by using different types of doping elements. But these sources 

have also their drawback which stems from their level of incoherence. Their optical 

noise figure translates itself into a higher bit-error rate (BER) than that of a SC. 
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In the search for cheaper alternatives of the SC, it can be resumed that an ideal 

continuum source designed only for small area WDM networks should generate 

powerful coherent radiation with just enough continuous bandwidth to cover at least 

an entire telecommunication band.  Next section of this chapter is a description of the 

Continuum project innovative ideas which also motivated this thesis and which had 

as the main goal finding precisely this type of ideal WDM continuum source. 

 

 

2.2 Continuum cavity 

As already described in the Introduction, the beginnings of the research which 

motivated this thesis are to be found in the ideas of the Continuum project, a project 

which had as its main goal the development of a cheap alternative to SC for small 

scale WDM telecommunications. Other objectives of the project were summarized in 

Table 1 of the Introduction. All of the three types of devices targeted by this project 

had the same core idea: the design of a passive resonant cavity in which the resonant 

modes are enlarged or even canceled completely. This type of resonant structure will 

Fig. 2.4 Comparison between the spectra of different types of light sources: He-Ne (Helium-Neon 
laser); Xenon lamp; ASE (Amplified Spontaneous Emission) Source; SLED (Superluminescent 
diode); Supercontinuum.  For each source, only the effective power was considered (the level of 
generated power which can be coupled onto an optical fiber) 
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be further on called a Continuum cavity. In analogy with a Fabry-Perot laser which 

oscillates on one of the resonant frequencies of its cavity, a continuum laser would 

oscillate on a large continuous bandwidth, as it will not be able to foster any 

frequency more than another. It is true that beside the design of a Continuum cavity, 

a judicious choice of an active medium is also needed to make a laser emit on a 

continuous interval. This is because the shape of the active medium’s gain plays an 

equally important role in the final laser emission as the role of the geometry of the 

cavity. Nevertheless, the right choice of the active medium is beyond the scope of 

this thesis. All simulations involving active cavities presented in this manuscript will 

take into account non-material-specific general phenomena and an active gain which 

is uniform on the entire desired spectral interval. 

As explained in Chapter 1, one must act on the geometry of a passive cavity in order 

to change its resonant spectrum. An efficient way to do that is if one acts on the 

geometry of the Bragg mirrors which border the cavity. The next section will thus 

start by describing the physical principles behind mode-cancelling of a resonant 

Fabry-Perot cavity using linearly chirped gratings (LCGs). This is followed by the 

presentation of the origins of the Continuum idea and by a section dedicated to the 

mathematical representation of that idea. These general notions are needed before 

passing to the specific structures and numerical simulations of Chapter 3. 

 

2.2.1 Physics 

The characteristic transmission spectrum of a Fabry-Perot (FP) resonant cavity was 

shown in the Fig. 1.2 of the Introduction. It was explained that certain wavelengths 

will positively interfere with their reflections from the cavity mirrors and thus will 

reinforce their exiting amplitudes and form transmission peaks, whereas others will 

negatively interfere with their reflections, forming the valleys in the spectrum of Fig. 

1.2. A Continuum resonant cavity would have such geometry that all radiation no 

matter the wavelength, would positively interfere with itself inside the cavity. The 

transmission characteristic of such a cavity will have a maximum value for all the 

wavelengths. Correspondingly, because of the conservation of energy, the reflection 

spectrum will also be uniform for all wavelengths and its amplitude will have a value 

equal to the difference between the incident and transmitted waves. When the two 
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reflectors forming the cavity will have the same value of the reflectivity [19, 55, 56] 

the transmitted wave will have the same amplitude for all the wavelengths as the 

incident wave, while the reflected wave will be null.  

Aiming to generate such a continuum resonance condition, the initial idea of the 

Continuum project was the design of a cavity formed between a metallic mirror and a 

linearly chirped grating (Fig. 2.5).  A linearly chirped grating (LCG) is a reflector 

characterized by a refractive index alternation between two values, with a period that 

varies linearly from one end to the other of the grating. In Fig. 2.5 the low refractive 

index has a lighter color than the high refractive index. It can be observed that as one 

is approaching the right side of the LCG, the length of each pair of layers increases 

linearly. Thus, each LCG could be considered a series of consecutive Bragg gratings 

characterized by linearly increasing periods. Because of this similarity with Bragg 

(uniform) gratings, a linearly chirped grating could also be called a linearly chirped 

Bragg grating (LCBG). 

At the left side of the cavity in Fig. 2.5 all radiation wavelengths are reflected in the 

same location, at the site of the metallic mirror. On the contrary, at the right side of 

the cavity each wavelength is reflected at a different location on the grating. Smaller 

wavelengths are reflected at the beginning of the grating, corresponding to where the 

small grating periods are located, whereas longer wavelengths are traveling a greater 

distance inside the grating before being reflected. This is due to the fact that each 

pair of layers (one layer having a low, the other having a high refractive index) has a 

corresponding wavelength which it reflects more than it reflects every other 

wavelength, in virtue of its similitude with a Bragg grating. 

A mode number is the number of times a resonant wavelength is comprised in a 

round-trip of the radiation inside the cavity. Because longer wavelengths are 

Fig. 2.5 Representation of optical paths inside a Continuum cavity: different wavelengths will travel 
different optical paths, in function of the position in the LCG where their reflection takes place. 
Smaller wavelengths are represented in blue, whereas intermediate wavelengths are in green and 
small wavelengths are drawn in red. 
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reflected farther away and are thus having longer round-trips, it can be supposed that 

if one matches the right LCG to a certain cavity length, one will be able to maintain 

the same mode number for all the reflected wavelengths. This is equal to having a 

continuum resonance condition satisfied for all the wavelengths reflected by the 

grating.  

The physical base of the Continuum idea will be translated in mathematical form in 

Section 2.2.3. Until then, the next section presents how this concept was firstly 

applied in the design of a continuous tunable laser. 

 

2.2.2 Origin of the idea 

The idea of the Continuum project has its origins in the work of Bergonzo et al. on a 

type of continuous tunable laser formed inside a resonant cavity [20, 21]. Figure 2.6 

shows a sketched representation of this type of laser, realized in a hybrid 

configuration (a different kind of support than the semiconductor chip used by the 

initial authors). Nevertheless, the principle remains the same. Firstly, a resonant 

cavity is formed in a fiber between a metallic mirror (M1) and a LCG reflecting only 

the spectral interval comprised between 1530 and 1570nm. An active medium 

consisting of a SOA introduced into the cavity is modulated by a radio-frequency 

Fig. 2.6 Representation of a type of continuous tunable laser formed with a LCG, inspired by the setup 
used by Bergonzo et al. The reflectivity characteristic of the LCG is presented in the insert above the 
grating.  
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(RF) signal. It was observed that by changing the RF applied on the SOA, the cavity 

also changed its lasing mode. It was also noticed that the lasing emission seemed to 

be shifting in a continuous manner as a function of the applied RF. It was not just 

jumping from a resonant mode to the next one, in which case the measurements 

would have recorded a distance between the lasing modes equal to the free spectral 

range (FSR) of the cavity. The FSR, or the distance between a cavity’s resonant 

modes, is inversely proportional to the length of that cavity. Because the cavity used 

by the authors was a small Fabry-Perot laser chip, the FSR would have been large 

enough to be detected. Thus, due to this continuous transition, the authors supposed 

that the resonant condition was respected by every wavelength in the reflection 

bandwidth (1530-1570nm) and that a continuum laser could be similarly created.  

 

2.2.3 Mathematical approximation 

The physics behind the Continuum project, explained in Section 2.2.1, could also be 

translated into the form of mathematical equations. Ideally, the resonant condition 

should be true for all the wavelengths reflected by the grating. In Fig. 2.7, each 

Bragg period of the chirped grating, composed of two consecutive layers of different 

refractive indices, is represented in blue, while the supposed optical paths of different 

wavelengths are represented with black double arrows.  

For the writing of the subsequent equations in this section, it was supposed that each 

wavelength is reflected only by its corresponding Bragg period. Let us call this 

supposition the reflection approximation. That is not entirely true, as each 

wavelength is reflected a little bit everywhere in the grating, but it can be considered 

that its maximum reflection is realized at the location of its corresponding Bragg 

period. Considering this first order approximation, then the wavelength Ȝ0 

corresponding to the first Bragg period Λ0 is reflected at the immediate beginning of 

the grating. Its resonance condition is then written in equation (2.1) in which L0 and 

n0 are the length and the refractive index of the cavity, and m is the mode number: 

2
0

00


mLn 

 
(2.1) 

As explained in the Section 2.2.1, the continuous resonance condition over a spectral 

interval is equivalent with all the wavelengths in that interval having the same mode 
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number. For this to happen, it was shown that the longer wavelengths must be 

reflected further away in the grating than the shorter ones. The resonance condition 

for a wavelength Ȝk which is reflected in the grating at the position z(Ȝk) - 

corresponding to the position of the Bragg period Λk - is written in equation (2.2). 

Following next in (2.3) is the resonance condition for the wavelength Ȝk+1= Ȝk+ΔȜ. 

2
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(2.3) 

The neff parameter represents the effective refractive index of the grating, and it is 

usually calculated as an average between the two alternating refractive indices. The 

position z(λk+1) where the wavelength λk+1 is reflected in the grating could be written 

as: 

 
 z

zz kk )()(
 

(2.4) 

By subtracting (2.2) from (2.3), then replacing in that difference m from (2.1) and 

z(Ȝk+1) from (2.4), the continuum condition becomes: 
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neff  (2.5) 

Because there is a correspondence between each wavelength and the Bragg period 

where that wavelength is primarily reflected, the equation (2.5) could be used to 

mathematically express the physical structure of the grating. This can be done by 

Fig. 2.7 Representation of a Continuum cavity on fiber; the grating at the right side of the cavity is 
divided in its constituent layers. Each pair of different layers forms a Bragg period of the grating. The 
length of each period – represented in blue - is linearly increasing from left to right. The supposed 
optical paths of different wavelengths through the cavity are represented with black double arrows. 
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replacing Ȝ with Λ accordingly to the Bragg wavelength law: 

 effn2
 (2.6) 

The physical structure of the LCG could now be defined using the physical chirp 

parameter CΛ, defined in (2.7) and which is equal to how fast the period of the 

grating changes along its longitudinal axis. For the case of LCGs the chirp is a 

constant value. 

zz
C 


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




  
(2.7) 

After inserting (2.5) and (2.6) in (2.7) it is found that the chirp of a LCG satisfying 

the Continuum condition is equal to: 

00

0

2 Ln
C

  (2.8) 

Because L0 is the length of the cavity, equation (2.8) states that the chirp of a LCG is 

inversely proportional to the length of the cavity for which it is used to generate a 

continuum.  

Beside the physical chirp, which describes the structure of the grating, another 

physical quantity could be defined to describe the spectral characteristic of the 

grating. Taking into account the close correspondence between a wavelength and its 

corresponding Bragg period (2.6), the continuum condition (2.8) is defined for the 

case of the spectral chirp as in equation (2.9). This quantity describes how fast the 

reflection spectrum broadens with the longitudinal size of the grating. 

0

0

L
C


   (2.9) 

The generalities presented in this Chapter will be useful in the next one, in which the 

idea of the Continuum project was tested using numerical tools. A complete 

development of the initial idea of the Continuum project can be found in the thesis of 

Wu [19]. Following in the next three chapters the original work of this manuscript 

will be concentrated. 
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This chapter presents the entire development of the initial Continuum idea which was 

theoretically outlined in the previous chapters. It begins by shortly describing the 

parameters which can be technologically varied when using a LCG to design a 

continuum cavity. It introduces also the two types of cavities used in both 

simulations and experiments. A more precise form of the mathematical continuum 

condition presented in the previous chapter is needed before passing at its numerical 

verification for the case of technologically realizable LCGs. The original results of 

such numerical simulations are presented toward the end of the chapter. 
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3.1 Description 

Linearly chirped gratings were already mentioned in the first two chapters of the 

thesis in conjunction with their utility to the Continuum project. In the previous 

chapter, it was said that a LCG can be regarded as a series of very small uniform 

Bragg reflectors having periods which are linearly varying along the axis of the 

grating. Mathematically, this can be written as: 

kk zC  0  (3.1) 

In equation (3.1) Λk is the period of the k-th Bragg reflector in the grating, C is the 

chirp of the grating and zk is the start position of the k-th Bragg reflector along the 

grating axis. For a LCG the chirp C is a constant quantity and it determines how 

rapid the Bragg period varies along the grating axis. Each small Bragg reflector can 

have multiple periods, but every linearly chirped grating described in this manuscript 

will be composed from Bragg reflectors of only one period. This means that each 

pair of layers of different refractive indices forms a Bragg period, while the next pair 

of layers forms the next Bragg period of the grating and so on.  Thus a LCG, which 

is formed of the entire succession of all the Bragg periods, can be represented as a 

refractive index variation as the one depicted in Fig. 3.1 for the case of a fiber grating. 

The difference between the high refractive index and the low refractive index can be 

quantitatively defined by a physical quantity called coupling coefficient. This is a 

complex physical quantity [26], but its module, which will be noted with the symbol 

k throughout this manuscript, is equal to: 

.
 n

k


 
(3.2) 

Moreover, because η in equation (3.2) represents the fraction of the modal power that 

Fig. 3.1 Variation of the refractive index (y-axis) of a linearly chirped grating realized on fiber. This 
grating has a chirp C=0.04 and a coupling coefficient k=80cm-1. 
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is contained in the fiber core and because it will be further supposed for the sake of 

simplification that the entire power is contained in the core, the expression 3.2 

simply becomes:  

,
 n

k


 
(3.3) 

where Δn is the refractive index variation (the difference between the high and the 

low refractive indices) and Ȝ is the reference wavelength (the wavelength for which 

the grating was designed to function). 

It can be thus said that the most important parameters for a LCG are its chirp and its 

coupling coefficient. The chirp, along with the grating’s length, defines the reflection 

bandwidth of the grating and it plays a central role in the continuum condition, as 

previously seen in section 2.2.3. The chirp could have positive values as well as 

negative ones, as the length of the Bragg periods could be increasing, as well as 

decreasing along the grating’s longitudinal axis.  

The coupling coefficient, on the other hand, is very important when considering the 

reflectivity amplitude of a grating. A greater coupling coefficient means larger 

refractive index variation, which in turn means stronger reflections inside the grating. 

That is because each interface between two layers of different refractive indices acts 

like a dielectric mirror having a reflectivity proportional to the refractive index 

variation between the two layers, a phenomenon quantified by the Fresnel equations 

[27]. Unlike the chirp which could practically be fixed at any desired value, the 

coupling coefficient is strongly limited by the technology used. This will be pointed 

in the next section, which will present the two different technologies employed in the 

numerical and experimental parts of this manuscript. There are many applications for 

which the coupling coefficient is not constant along the length of the grating. This 

can be useful for example to better adapt a fiber grating with the rest of the fiber, by 

slowly tapering the refractive index variation toward the tips of the grating. This 

latter type of grating is called an apodized grating. In function of the form of the 

envelope of its refractive index variation, the most common types of apodized 

gratings are the Gaussian and the Raised-Cosine. 
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3.2 Cavity structures  

Throughout the simulations of this and next chapter, and throughout the experimental 

part of Chapter 5, two types of cavity structures will be referenced, in function of the 

support medium on which the cavity was created. These will be succinctly presented 

next, along with some of their technological particularities. 

 

3.2.1 Hybrid cavity 

The hybrid cavity studied in this manuscript and presented in Fig. 3.2 is very similar 

to the laser cavity used by Bergonzo et al. and introduced in section 2.2.2. The 

difference is that this time the LCG is matched to the length of the cavity by the so-

called continuum condition (2.8) and that the SOA of Fig. 3.2 is alimented only by a 

DC current source. The SOA can be inserted in the resonant fiber cavity by splicing 

the SOA onto the fiber, the new structure being called a hybrid cavity, because of the 

different nature of the active medium comparing to the rest of the cavity. 

The cavity can also passively function as a filter, in which case the SOA is missing 

and the whole cavity is entirely formed on fiber, starting with the metallic mirror in 

the left, which is coated on the end of the fiber, and finishing with the LCG on the 

right, which is obtained by exposing the photosensitive core of the fiber to an intense 

optical interference pattern [28]. Linearly chirped fiber Bragg gratings (LCFBGs) – 

as LCGs on fiber are sometimes called - found numerous applications in optical 

communication systems [29] and fiber optical sensor applications [30]. The most 

outspread of their applications is the dispersion compensation of long-haul 

telecommunication systems [31]. The great limitation of this technology arises from 

the way in which the LCFBG is engraved onto the fiber, using light interference to 

 
Fig. 3.2 Schematic representation of a hybrid cavity formed between a metallic mirror and a LCG. 
The active medium consists of a SOA. The name “hybrid” comes from the fact that a SOA is inserted 
inside the fiber structure. 
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change the refractive index of the fiber accordingly to the interference pattern created. 

This technology doesn’t permit for great variations of the refractive index, thus it 

does not permit for high coupling coefficients. The usual technological parameters 

found in the literature [32] for a LCFBG working in the infrared cite the following 

usual values for a Bragg period (Λ), refractive index variation (δn) and grating length 

(L) respectively: 0.5ȝm ≤ Λ ≤ 100ȝm, 10-5 ≤ δn ≤ 10-3, 1mm ≤ L ≤ 1m. This would 

mean a maximum value for the coupling coefficient of k ≤ 20cm-1. This is not 

entirely accurate, as it is possible to find commercial LCFBGs with coupling 

coefficients of up to 100cm-1. This is an important fact to note, especially when 

numerically simulating resonant fiber cavities. 

 

3.2.2 Integrated cavity 

The second type of resonant cavity studied in this thesis is the integrated cavity. As 

its name suggests, this type of cavity is formed on an InP integrated wafer on which 

several dies have been lithographed, each one having approximately ten different 

cavities, as represented at the left side of Fig. 3.3. Some of the structures on the die 

 
Fig. 3.3 Schematic representation of a die with 11 integrated cavities is drawn to the left. The LCGs 
are represented with the color red. At the right, a zoom into the structure of an integrated cavity (top) 
is presented. Also at the right a photo of a series of four Bragg gratings is displayed with the courtesy 
of Alcatel. 
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are simple Fabry-Perot cavities formed between metallic mirrors. The ones that are 

formed between a metallic mirror and a LCG have a red mark on them, 

corresponding to the place where the LCG is placed. In the example of Fig. 3.3 the 

semiconductor die at the left is comprised of eleven different cavities, of which one 

is represented in a magnified form to the right. A metallic electrode is responsible 

with the current alimentation of the active medium. A photograph showing the 

precision of the e-beam lithographic process is displayed at the bottom right of Fig. 

3.3. In this photo, four uniform Bragg gratings of almost similar periods are shown 

one next to the other. This type of precision is even more critical when fabricating 

the LCGs. Considering a reference wavelength of Ȝ=1.5ȝm and a refractive index for 

InP of n=3.2 then from (2.6) a reference grating period equal to Λ=230nm is 

calculated. Another thing to be taken into account is the dimension of the cavity that 

can be designed onto an InP wafer. Considering the dimension of such a cavity 

between 200ȝm and 2mm, it results a value for the spectral chirp CȜ between 0.75 

and 7.5nm/ȝm and for the physical chirp CΛ between 0.1 and 1nm/ȝm. This also 

means that for a typical cavity of length L0 =0.5mm each period in the LCG may 

need to be exactly 0.12nm longer than the one before for the condition (2.8) to be 

satisfied. It is for this reason that high precision electron-beam lithography is needed, 

as in the technology displayed in the photo of figure 3.3. It must also be taken into 

account that InP technology offers the possibility to obtain much higher coupling 

coefficients (up to 1000cm-1). This is due to the fact that the change in the refractive 

index is realized by doping.  Because the length of an integrated grating is much 

smaller than that of a LCFBG, higher coupling coefficients are necessary to 

compensate for the length and to assure the same level of reflectivity in both cases. 

An experiment involving this type of cavity is presented at the end of Chapter 5. The 

simulations in this chapter will mostly deal with fiber gratings, but the ones in next 

chapter will mostly concentrate on the integrated type. 

 

3.3 Numerical methods for grating analysis 

Grating analysis can refer to two different types of actions. If given a grating whose 

parameters are unknown, analyzing it means first finding the parameters of that 

structure by non-invasive methods. This could be done for example using light 
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interferometry followed by a layer peeling algorithm [33]. In this manuscript though, 

grating analysis means already knowing the internal structure of the grating and 

using the known parameters to numerically simulate the grating’s behavior on the 

computer. For a LCG there are three sufficient parameters which can be used to 

completely define a grating’s spectral responseμ the chirp C, the coupling coefficient 

k and the length of the grating L (alternatively, the number of periods M can be used). 

There are many numerical methods [19] developed in the literature for the purpose of 

simulating the spectral response of a known grating. The ones that are used the most 

are the Rouard method [34-36] and a matrix implementation of the coupled mode 

theory [26, 36, 37]. The coupled mode theory for the case of Bragg gratings with a 

uniform coupling coefficient will be presented next in section 3.3.1. A generalization 

of this method for the case of non-uniform coupling coefficient gratings can be 

numerically solved by a transfer matrix method presented in section 3.3.2. The 

grating spectra simulated in this manuscript are realized using a more efficient 

refinement of the matrix method [26, 38] which will also be presented at the end of 

section 3.3.2. 

 

3.3.1 Coupled mode theory 

The coupled mode theory is the most popular approach for analytically solving the 

spectral response of Bragg gratings, for which it is considered the most intuitive, 

simple and accurate tool [37]. Although initially conceived for solving the spectra of 

fiber Bragg gratings having a uniform coupling coefficient, the numerical 

implementation of this method can be extended to any other type of grating. The 

derivation of the theory will not be explained in this text, as it is very easily found 

elsewhere in the literature [26]. It is worth mentioning though the basic assumptions 

which stand at the core of this method, which are also the general suppositions used 

in all the simulations presented in this thesis. Firstly, the fiber is considered lossless, 

thus any type of absorption of light will be neglected in mathematical equations. 

Then, the electromagnetic field is considered perpendicularly polarized to the 

propagation axis z, considered also the longitudinal axis of the grating. A forward 

propagating wave could then be expressed as an exponential of the form exp[i(βz-

ωt)]  where β>0  is the propagation constant. The grating is modeled as a periodic 
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perturbation n(z) of the refractive index of the fiber, whose period ΛB may vary along 

the grating’s length. It is also assumed that the effective refractive index neff used in 

the equations of the propagation of light is approximately equal to the weighted 

average of all the refractive indices along the length of the fiber. The equations will 

take into account only the z-variation of the amplitude for both the forward and the 

backward propagating waves. Temporal variation is neglected in all of the equations, 

but is considered implicit. Starting with these assumptions, the final form of the 

coupled mode theory can now be derived, and the result is displayed in equations 

(3.4). In this coupled equations u(z) and v(z) are the amplitudes of the forward, 

respectively backward propagating waves, and β=π/Ȝ  is the propagation 

constant.  
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Another important quantity is the coupling coefficient q(z) which is linked to the 

refractive index variation. The modulus of q(z), marked with the symbol k, was 

already acknowledged in equation (3.2) as an important parameter of LCGs. The 

phase of q(z) is also linked to the refractive index variation, being a vital parameter 

in the case of apodized or chirped gratings. For the case of uniform-q gratings, which 

are the gratings with a constant coupling coefficient along their longitudinal axis z, 

the solutions are straightforward and are obtained by directly solving the differential 

equations resulting from (3.4). The equations thus obtained depend on four constants 

which can be calculated from the boundary conditions given by knowing the values 

of the forward and backward propagating waves for the coordinates z=0 and z=L.  

 

3.3.2 Transfer matrix method 

The previous solution for a grating having a constant coupling coefficient q(z)=const 

can be numerically extended to any other type of grating. It is sufficient if the 

varying q(z) structure could be replaced by a series of j=1,2,...,M small sections, 

each section j having an approximately constant coupling coefficient qj and a length 

Δ equal to Δ=L/M . Then each grating j could be represented by a transfer matrix Tj 
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linking the forward and the backward propagating waves at coordinates (j- 1)Δ  and 

j Δ, as shown in equation (3.5).  
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At the borders between two sections the same pair of propagating waves is 

referenced by two different matrices (j  and j +1 ), allowing us to link all the matrices 

together in a single matrix product T=T1·T2·…·TM -1·TM. This total product will 

connect the propagating waves at position z=0  with the waves at z=L, as shown in 

the following equation:  
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Considering T a matrix of the form displayed in equation (3.7) the reflection and the 

transmission coefficients could then be calculated as shown in equation (3.8). 
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Because each section j is considered having a constant coupling coefficient, the 

mathematical form of the matrices Tj is found by solving the equation (3.4) for 

q=const. In the general transfer matrix method, the exact function of the refractive 

index variation, which is accounted by the phase of the coupling coefficient q, is 

Fig. 3.4 Schematic representation of the transfer matrix method which was used in this manuscript to 
numerically solve the spectral response of gratings; a random structure of layers is used for 
exemplification, as the algorithm could be used for any type of discrete layer grating. 
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considered to be a sinusoid. However, there is a type of grating for which the form of 

the transfer matrices becomes very simple. This is the case of the thin film layered 

grating, for which the transition from a high refractive index to a lower one is 

realized abruptly. In this model, also called in the literature [26] the discretized 

grating model and represented in Fig. 3.4, the grating is viewed as a succession of 

layers of different refractive indices. Each layer j will have its own transfer matrix 

(Pj) corresponding to the propagation of light through that layer. In addition, every 

transition of the refractive index from a layer j to the next one will be modeled by an 

interface matrix (I j). The mathematical formulas for these matrices are displayed in 

equations (3.9) and (3.10) respectively.  
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It should be noted that the previous model of a grating represented as a sinusoidal (or 

any other continuous) refractive index variation did not need the presence of the 

interface matrices (I j).  

The transfer matrix product which links the propagating waves at position z=0 with 

the waves at z=L as in equation (3.6) can now be defined as: 

MM IPIPIPIT  ...22110  (3.11) 

The formulas for the reflection and transmission coefficients are the same as 

previously defined in (3.8) regardless of the grating model used. It can be easily 

checked that r(Ȝ)·r * (Ȝ)+t(Ȝ)·t * (Ȝ)=1  for every wavelength Ȝ. Every grating 

simulation realized in this thesis uses this discretized grating model as its basis. 

 

3.4 Exact mathematical condition 

A mathematical approximation of the Continuum condition was presented in section 

2.2.3 of this thesis. The continuum resonance condition found in equation (2.8) 

associated the chirp of the LCG to the length of the cavity. This equation was 
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obtained after considering that each wavelength is reflected only by its corresponding 

Bragg period. But this simplification is not entirely true to the reality of things even 

though at that point it was necessary, as there is no analytical method capable of 

taking into account all the interactions of light with a multi-layer grating. Now, after 

introducing the possibility to completely determinate the behavior of light inside the 

grating by way of numerical methods, such an approximation is no longer necessary. 

In this section, an exact continuum condition will be sought after. This should be 

done in relation to the parameters returned by the numerical matrix method used to 

simulate the LCG. As those parameters are the differences in amplitude and phase of 

the reflected waves in relation to the incident waves, then an exact continuum 

condition will be written using those parameters.  

In Fig. 3.5 M1 is a simple dielectric mirror, introducing a phase difference of ±π after 

reflection which, being independent of the wavelength, could be neglected in future 

calculations. In the same figure, the round-trip phase shift has been separated in two 

terms, one term corresponding to the optical path through the cavity (φFP) and the 

other to the medium path length of the radiation in the Bragg grating (φBG). In a 

resonant cavity the sum of the two is a multiple of 2π for every wavelength Ȝ 

corresponding to a maximum of emission (resonance condition). In our case, φBG 

should have such a value that the total round trip phase shift (φFP + φBG) will remain 

a multiple of 2π on a large bandwidth. In other words, the variation of φBG should 

cancel the variation of φFP with Ȝ:  

. dddd FPBG 
 (3.12) 

If (3.12) is true for a large enough bandwidth, our structure will show a continuum 

behavior. Instead of using phase derivatives, equation (3.12) can be written around 

another physical quantity called the group time delay (GTD) which in certain cases 

has a more intuitive interpretation. The GTD is a quantity characterizing optical 

 
Fig. 3.5 Representation of a resonant cavity realized with a LCG, in which the total round trip phase 
shift has been divided between the Bragg grating (φBG) and the rest of the cavity (φFP). 
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systems and has a mathematical form defined by (3.13), where φ is the phase shift 

introduced by the propagation through the structure. Depending on where the phase 

difference is measured in relation to the incident wave, there can be a GTD 

corresponding to the transmission through the structure, and another GTD 

corresponding to the reflection. Because all gratings discussed in this paper function 

as cavity mirrors, what will be important to us is the GTD corresponding to the 

reflection on the gratings. 

 ddcGTD  )2(2

 
(3.13) 

It can be shown that when all the wavelengths Ȝ in a beam are travelling the same 

optical path through a structure, in that case the GTD is equal to the transit time 

through that structure and has a value independent of Ȝ. Because the LCGs are 

structures in which the optical path is wavelength-dependent, in this case the intuitive 

meaning of equation (3.13) no longer holds true and we have to contend ourselves 

with solving the mathematical formula. 

The group time delay (GTD) of a radiation Ȝ reflecting on a grating is proportional to 

dφ/dȜ as shown in (3.13). It can be stated from (3.12) that the GTD of the designed 

grating must have the same absolute value and an opposite sign compared to the 

GTD of the cavity.  This condition must be true no matter the phase formalism 

adopted as long as we keep consistent with it in all simulations and calculations. In 

the numerical simulations by the transfer matrix method (TMM), the phase shift of a 

radiation Ȝ after propagation on a distance L through a medium of refractive index n 

is considered equal to φ(L) = – 2πnL/Ȝ. In this phase formalism, the GTD of the 

cavity is always positive. It follows from (3.12) that the GTD of the Bragg grating 

(as simulated by TMM) should correspondingly have a negative sign in the desired 

bandwidth:  

.0BGGTD
 (3.14) 

The purpose of the simulations presented in the next section was to find a LCG 

having a negative group time delay. It is obvious from the previous equations that a 

grating with a negative GTD could realize the continuum condition only with a 

matching cavity having a positive GTD of the same absolute value. This being told, it 

is easier to firstly find a grating capable of canceling the resonant modes of a cavity 

and then from its parameters to calculate the length of that cavity than the other way 
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around. Thus, a formula linking the GTD to the cavity length will be sought in the 

remaining part of this section. Firstly, we will rewrite the resonance condition for a 

radiation of wavelength Ȝ without linking it to the specific Bragg period 

corresponding to that wavelength as we did in section 2.2.3: 

.
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 mznLn effeff 
 

(3.15) 

In equation (3.15) zeff(Ȝ) is a position inside the grating from where the radiation of 

wavelength Ȝ seems to be reflected. In fact the radiation Ȝ is reflected at every 

interface between two layers of different refractive indices, but its resulting phase, 

measured at the entry point of the grating, could be interpreted as resulting from the 

reflection of that radiation at a specific location in the grating. By multiplying (3.15) 

with (-4π), the result is the equation (3.16) which highlights the phase terms in the 

resonance condition: 
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(3.16) 

The second term in equation (3.16) represents the phase shift φ(Ȝ) of the radiation of 

wavelength Ȝ after passing through the grating, and its value is conveniently returned 

by the TMM method. That is why we chose to multiply (3.15) with (-2π) instead of 

(2π). The minus sign forces us to keep consistent with the phase formalism chosen 

for the matrix method and presented in the previous section. 
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By replacing (3.17) in (3.16) the resonant condition becomes: 
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(3.18) 

In the first term of equation (3.18) we can recognize the round-trip phase of the 

radiation through the cavity (without the grating). After its derivation in function of Ȝ, 

the continuum resonance condition could be written as in (3.19). 
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By introducing (3.19) in the formula (3.13) of the GTD and highlighting L0 from that 

equation, we arrive at the formula which relates the length of the continuum resonant 

cavity with the negative GTD of its reflecting grating: 
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(3.20) 

3.5 Results 

Considering the theoretical approach expressed in the previous section, designing a 

continuum resonant cavity is equivalent with searching for a reflecting structure 

having a constant negative GTD on a certain wavelength interval. After finding this 

type of structure, we can use it to fabricate a continuum resonant cavity with a length 

equal to the value of L0 calculated from equation (3.20). The idea of this chapter was 

to use a LCG as such a negative GTD reflector. The three parameters which can be 

varied in LCGs (length, chirp and coupling coefficient) offer us a vast number of 

possible gratings. Our objective was to find under which conditions a LCG may have 

a negative GTD in its reflection bandwidth. Thus, this section will present the 

influence of the three constructive parameters of a LCG on the group time delay, 

when the LCG is functioning as a reflector.  

In the following figures of this section, the values for the group time delays and the 

reflectivities are calculated each time for a wavelength Ȝ=1550nm, situated exactly at 

the center of the bandwidth for each simulated grating. The grating’s bandwidth B 

varies each time with the chirp C and the grating length L, according to the simple 

formula B=nef f·L·C, where neff is the effective refractive index of the grating.   

For the beginning let us consider in Fig. 3.6 the influence of chirp on the GTD of a 

LCFBG of standard length L=1cm. In the same figure, the values of the 

corresponding reflectivities are plotted in blue. The two separate plots are for two 

limit values of the coupling coefficient. To the top there is the case of a high-k 

grating characterized by a 100% reflectivity for chirps as high as 20nm/cm. The 

reflectivity (blue line) drops above this value of the chirp: because of fewer Bragg 

periods found in the vicinity of a wavelength Ȝ, the sum of the separate reflections 

for that wavelength drops. Regarding the GTD, gratings with low chirps have many 

Bragg periods one after the other reflecting the same narrow spectral bandwidth. This 

means that a wavelength situated at the center of this bandwidth will not travel much 

of a distance into the grating, being reflected right at the beginning of the grating. 
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This reflection is similar to that coming from a strong mirror placed near the 

beginning of the grating, entailing a value close to zero for the GTD. While 

increasing the chirp and thus the bandwidth, the first periods of the grating will start 

reflecting less and less the wavelength corresponding to the center of this bandwidth. 

This will allow the radiation having that wavelength to penetrate into the grating 

 
 
Fig. 3.6 Influence of the chirp on the group time delay (GTD) of a LCFBG of length L=1cm and 
coupling coefficient of: a. k = 100cm-1 and b. k = 1cm-1. The GTD is represented by a black pointed 
line and the reflectivity in a dashed blue line. Both the reflectivities and the GTDs are calculated for 
Ȝ=1550nm at the center of the grating’s bandwidth. 
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more, which in turn increases the value of the GTD. The increase is limited at a value 

corresponding to that wavelength being reflected only in the immediate vicinity of 

the central Bragg period of the grating, at a position zef f =L/2 . Increasing the chirp 

even more beyond this value will not modify the GTD for this central wavelength. 

Looking at Fig. 3.6(b) a plummet of the reflectivity comparing to the previous case 

can be observed, which is due to the low coupling coefficient used. Because of this 

 
Fig. 3.7 Influence of the coupling coefficient k on the group time delay (GTD) of a LCFBG of length 
L=1cm and chirp: a. C=100nm/cm and b. C=0.1nm/cm. The GTD plot is colored black, while the 
reflectivity values are in blue. The values are calculated for the center of the grating’s bandwidth. 
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low reflectivity, the central wavelength manages to reach all of the Bragg periods of 

the grating in spite of the grating’s low chirp. The effective (weighted average) 

reflection coordinate is very close to ze f f ≈L/2. When increasing the chirp, the 

reflection bandwidth of the grating increases around the central wavelength, but the 

number of periods capable of reflecting it decreases correspondingly. At high chirps, 

only the central Bragg period situated at ze f f =L/2  will reflect its corresponding 

wavelength, similarly to what was described previously for a high-k grating. This 

means that for the case of high chirps, the coupling coefficient has little to no 

influence on the GTD.  

This last point can also be noticed in Fig. 3.7(a) where the influence of the coupling 

coefficient on the GTD is analyzed in the case of a fiber LCG of elevated chirp. 

While the coupling coefficient was increased 1000 times, the variation in the GTD 

was no higher than 0.1%. On the contrary, for the case of a low chirped grating, the 

variation of the GTD with the coupling coefficient is very important, as shown in Fig. 

3.7(b). Despite its large variation with k, the GTD only asymptotically approaches 

zero and it does not reach negative values. As explained earlier, every Bragg period 

of a low chirped grating will be able to reflect the central wavelength of its 

bandwidth. When the coupling coefficient is low, the radiation is reflected from 

every period of the entire grating, having an effective (average) reflection coordinate 

 
Fig. 3.8 Influence of the chirp’s sign on the group time delay (GTD) of a LCFBG of length L=1cm. 
The variation of GTD with k is studied for two different gratings with chirps C=100nm/cm (black) 
and C=−100nm/cm (blue). 
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equal to zef f≈L/2. When the coupling coefficient increases, the radiation will be 

increasingly reflected by the first periods of the grating and thus its effective 

reflection coordinate zef f will decrease accordingly.  

The degree of accuracy of the physical hypothesis standing at the base of the 

Continuum project and explained in section 2.2.3 is tested in Fig. 3.8. It was 

considered that, given a positive chirped LCG, the short wavelengths will be 

 
Fig. 3.λ Influence of the grating’s length on the group time delay (black) and central reflectivity 
(blue) of a fiber LCG of chirp C=100nm/cm and coupling coefficient k=100cm-1. 

 

 
Fig. 3.10 Influence of the grating’s medium on the group time delay (GTD) of a LCG of length 
L=1cm. The integrated grating is represented in blue, while the fiber LCG is in black. A coupling 
coefficient of 1000cm-1 was used for the InP grating, while for the fiber one a k=100cm-1 was used. 
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reflected before the longer ones, by the Bragg periods situated at the beginning of the 

grating. If this was true, then reversing the grating and thus creating a negative 

chirped LCG would make the longer wavelengths to be reflected before the shorter 

ones. This variation of the effective reflection coordinate when turning the grating 

from the positive to the negative chirp must have a pronounced effect on the GTD, 

but this effect is not seen for the central wavelength. As noticed in Fig. 3.8 only a 

small difference of 1ps was obtained by turning a C=100nm/cm fiber grating of 

length L=1cm with the other end first.  

In all of the simulations the grating acted as a mirror which was placed inside the 

grating at different positions zeff(C, k) є (0, L/2) in accord with the supposition of 

equation (3.17). On the contrary, if noticeable differences in effective reflection 

coordinates of different wavelengths were possible as supposed in section 2.2.1, then 

we would have seen a much higher difference between the two GTDs of Fig. 3.8 and 

a negative zeff(C, k) for certain values of C and k in the case of a positive chirped 

grating.   

The dependence of the GTD (calculated for the central wavelength) with the 

grating’s length is shown in Fig. 3.λ. At first the behavior of the reflectivity does not 

seem very intuitive. After a certain length the reflectivity will start to decline with the 

length of the grating. This happens because as we increase the number of periods by 

adding small Bragg periods to the left and large Bragg periods to the right, newly 

added Bragg periods may reflect again the central wavelength, but this time in phase 

opposition to the initial periods of the grating.  As for the GTD, increasing the length 

will always push further away the position of the effective reflection coordinate zef f 

≈L/2.  

The figures presented in this section only displayed the GTD results for some limit 

cases (high chirps vs. low chirps, high k vs. low k, etc) of fiber gratings. Other 

intermediate cases (like average chirps and coupling coefficients) were neglected for 

not bringing anything new to the observations already made. The same series of 

simulations was done for the case of InP gratings with no better results (Fig. 3.10). 

The advantage of the integrated technology is the use of higher coupling coefficients. 

This in turn translates in smaller GTDs for small chirps, when the reflection is 

realized close to the beginning of the grating (ze f f≈0). Because InP has a much 
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higher refractive index then a fiber grating, its GTD will also be much higher when 

increasing the chirp and approaching an effective reflection coordinate of zeff ≈ L/2. 

This is caused by an increase in the optical path of the light, even if the reflection 

happens at the same physical coordinate in both mediums.  

The discussions in this chapter are original analyzes of the behavior of light in a LCG 

from the point of view of the GTD. Sadly, our objective of finding a reflecting 

grating with negative GTD has not been achieved. This may be because of the limits 

in the degrees of liberty offered by a linearly chirped grating, or it may be because of 

a fundamental physical limit inherent in the process of reflection. Both of the 

possible causes will be analyzed in the next chapter, where the search for a negative 

GTD grating will be greatly extended.  



 

 

 

 

 

Chapter 4  

Genetic Gratings 

 
 

 

 

 

 

In this chapter the search for an already existing negative GTD grating will be 

replaced by the design of such a grating. The structures presented in this chapter and 

their associated spectra are all original work. We will start with an introduction into 

the necessity of using random gratings and then continue with a review of the 

synthesis methods capable of producing such structures. The results are presented for 

both cases of fiber and InP gratings. Simulations of grating spectra are followed by 

those of their corresponding cavities. The chapter will end with a second synthesis 

method offering a mathematical justification for the impossibility of obtaining a 

perfect grating. 
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4.1 Random gratings 

While we have searched for a solution to the problem of a negative GTD grating in 

the previous chapter we have limited ourselves only to the technologically available 

space of LCGs. The dependence of the GTD on the three fabrication parameters was 

calculated and explained. It was observed that no matter the parameters used, it was 

never possible to obtain a negative GTD in the center of the reflection bandwidth of a 

LCG. The idea of this chapter is to extend our search indefinitely to any type of 

reflecting structure realized by the variation of the refractive index. This type of 

structure for which there is no simple analytical function linking one layer of the 

grating with the other layers will be called a random grating. As shown in Fig. 4.1 

there can be three types of random gratings, in function of the parameter which is 

considered random. The first type, in which the width of each layer is independent of 

the widths of the other layers, is similar to a series of LCGs randomly chirped across 

the length of the grating. The second one, in which the refractive index varies 

randomly across the grating, is similar to a series of LCGs with a randomly varying 

Fig. 4.1 Three examples of different types of InP random gratings: a) a grating in which the width of 
each layer is random; b) a grating in which the refractive index of each layer has a random value; c) a 
grating in which both the width and the refractive index of each layer are random 
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coupling coefficient. The third one will be a combination of the first two. In this 

chapter the focus will be led on the first type, as it was considered easier to be 

fabricated than the other two. But no matter the type chosen, each time the number of 

possible gratings resulted is unlimited. Even when imposing strict limits to each 

parameter’s possible variation, the number of possible gratings still remains 

enormous. For example, let us consider that the width of each layer will have only p 

possible values. Because there will be M independent layers, the number of possible 

gratings becomes equal to pM which will take very long to be entirely exhausted 

considering that there will be at least M>200 layers needed to construct a grating. 

Choosing the minimum value for the number of possible values for each layer of 

only p=2 and a required simulation time for each possible grating of at least t * =2s 

then a total time of t * ·pN >1050years will be needed to cover all the possible 

combinations of layers. The approach of calculating the GTD and the reflectivity 

only for a centered wavelength used in the previous chapter does no longer work for 

the case of random gratings which do not have a specific bandwidth. Thus the time t* 

was the time needed to calculate the spectrum of one grating over a bandwidth of 

30nm with a precision of 0.1nm with a 3GHz processor. Because of this time 

limitation, an exhaustive search for a grating having a negative GTD can not be done 

for the case of random gratings. The right approach in this case is to try to synthesize 

such a grating ourselves. The methods described in the next section were created 

specially for such an endearing feat. 

 

4.2 Numerical methods for grating synthesis  

The problem of finding a grating corresponding to a desired transmission or 

reflectivity is solved by different methods throughout the literature: a numerical 

solution to the coupled Gel'fand-Levitan-Marchenko integral equations [39], a 

Genetic Algorithm [40], Discrete Layer Peeling [41] or Fourier transform [42]. 

Applications of such methods are found wherever the classical type Bragg gratings 

(uniform or linearly chirped, with or without apodization) do not deliver satisfying 

results. Lower side lobes, lower pass band ripple and lower dispersion are some of 

the improvements obtained after using this type of novel structures over their LCG 

counterparts. All this comes with a cost. The gratings returned by the above synthesis 
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methods are sometimes difficult to be realized physically comparing to a LCG, as 

their refraction index variation has sometimes seemingly random shapes. This 

disadvantage will also be present for the case of the structures presented in this 

chapter.  

First one of the methods listed above, based on the coupled GLM equations, is not 

exactly useful for the design of a Bragg grating, but for a corrugated filter.  A 

corrugated filter is similar to a Bragg grating, except that the reflections are caused 

not by a variation in the refractive index in the volume of the structure, but by a 

variation in the form of its surface.  

The genetic algorithm and the Fourier transform methods have been previously used 

for the design of Bragg gratings of continuous refractive index variation. As 

explained in section 3.3 the spectra of gratings with a continuous refractive index 

variation are numerically obtained by a TMM approximation of the coupled mode 

theory. For the case of these gratings, it is the envelope of the refractive index or the 

coupling coefficient q(z) which will be synthesized by the algorithms.  

The Discrete Layer Peeling method is different than the others, as it was specially 

created for the synthesis of discrete Bragg reflectors, characterized by an abrupt 

refraction index variation when passing from one layer to the next one, as in the case 

of the gratings simulated in this manuscript. The spectra of such thin film gratings 

are obtained by an adaptation of the TMM method which was explained in the final 

part of section 3.3.2. 

One of the original points of this chapter is the adaptation of the genetic algorithm 

for the case of thin film gratings. It is the best tool to optimize a grating, when an 

exact solution is not possible. For our specific objective of a continuum reflector, two 

simultaneous conditions on two spectral parameters (reflectivity and GTD) will be 

required. As it will be soon noticed in the simulations, the two conditions are 

mutually exclusive, which forces us into adopting the optimizing properties of the 

Genetic Algorithm. On the other hand, the Discrete Layer Peeling method, which 

was expressly created for the case of discrete gratings and which is based on the 

discrete Fourier transform of the filter’s response, will be recommended when an 

exact solution is possible. 
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4.2.1 Genetic Algorithm 

The genetic algorithm is a fast way of approaching optimal solutions when the space 

of variables is so large that an exhaustive search of all the solutions is impossible. 

One of the algorithm’s disadvantages is that it does not find the best solution to a 

problem, but only local optima depending on the random initial conditions used. 

Regarding its use in the design of Bragg gratings, it is employed in the literature not 

for the synthesis of discrete layer gratings, but for that of continuum refraction index 

gratings [40]. Its former application was thus more fiber-oriented, as in fibers the 

transition from a lower refraction index to a higher one is smoothly realized. On the 

contrary, the genetic algorithm developed in this thesis will be applied exclusively to 

discrete layer gratings and will be thus more oriented towards the design of 

integrated structures.  

The concept of a genetic algorithm was theorized by Holland [43] in 1975. Inspiring 

himself from the natural mechanisms of selection specific to the animal world, he 

postulated the existence of similar mechanisms for the selection of artificial created 

systems. In the natural world, the genetic algorithm has its counterpart in the natural 

selection mechanisms described for the first time by Darwin [44] in his book from 

1859. Basically, what Darwin says is that in every given species, the best of 

individuals give rise to more offspring than the weakest of the individuals in that 

species. The best of individuals are the ones more able to survive to the present set of 

environmental conditions and more able to find mating partners. Translating this in 

the technical language which will be used further on in this chapter, in every given 

generation a function can be applied on the characteristics of every individual in a 

species, calculating that individual’s chances of survival and mating. This function 

will be called a fitness function and in the natural world it must take into 

consideration both the individual’s capacity to survive to sexual maturity and also its 

capacity to attract opposing-sex partners.  The latter consideration will be applied 

almost exclusively to males, as in most animal species all the females will be able to 

give birth to offspring once reaching sexual maturity, but only a few best males are 

able to do the same. The difference is that while the females are very limited in the 

amount of offspring they can give birth to because of the amount of time involved in 
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the production of just one sexual cell, the best fitting males are limited only by the 

number of females in the population. In the extreme case of the elephant seals for 

example, 4% of males are responsible for 88% of the observed copulations [45]. This 

4% of the males, called the alpha-males, are the ones who are the strongest and thus 

able to chase any other male from the territory of their harem. Even if this is an 

extreme example in the animal world, it is by no means a singularity. Even in the 

human species where monogamy is culturally imposed in many parts of the world, 

there are societies in which a few alpha-men account for the majority of offspring. 

This is the case for example with the Genghis-Han lineage [46] in which case 

approximately 8% of the men in Asia have a common ancestor from a thousand 

years ago. This accounts for 0.5% of the world population originating in the same 

male individual of a thousand years ago. Other known lineage in Mongolia comes 

from Giocangga [47]. In another study, one in five males of northwestern Ireland 

seems to have a common male-ancestor from the medieval dynasty of Uí Néill [48]. 

It is obvious that the fitness function, which is responsible with calculating the 

probability for reproduction of every individual, has in the case of human species a 

very important social component. In the monogamous societies, the laws are in such 

a way that they even the chances of reproduction of individual males, creating thus 

an artificial homogenization of the possible values returned by this function. On the 

contrary, the fitness function has accentuated peaks and great value disparages in 

such animal species as the elephant seals or the birds of paradise [45]. 

Continuing with the explanation of the natural selection, the selected individuals pass 

their characteristics to next generations by the intermediate of genes. In fact the 

majority of an individual’s external characteristics whether physical or behavioral, 

are encoded in the genes, which are small fragments of code situated at the core of 

each of their cells. When a male sexual cell combines with a female sexual cell a new 

individual is born, taking half of its characteristics from the father, and the other half 

from the mother’s sexual cells. The new combination of genes may yield external 

characteristics which are considered better than the characteristics of its parents, in 

which case the value returned by the fitness function when applied on the child will 

be higher than the corresponding values of his parents. When the maximum fitness 

function remains constant over a great number of cycles, it may mean that the new 

individuals of a specific species converged to have the same genes, representing the 
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characteristics of the ideally-fitted individual in that species. In the natural world 

though, the fitness function undergoes a continuous evolution determined by 

environmental dynamical phenomena like climatic and ecosystem changes. 

Regarding the temporal evolution of the number of individuals in a certain species, 

the natural selection theorem was discussed supposing this number a constant from a 

generation to the next one. This supposition is based on the fact that resources of 

food and shelter are always limited in real life, which brings about an effect of 

saturation in the number of individuals a species can have. 

It is not complicated to pass all these observations taken from the natural world and 

to translate them into an algorithm capable of synthesizing artificial structures. The 

genetic algorithm which will be addressed next will also be used for the generation 

of all the random gratings displayed at the end of this chapter. Differences between 

this method and the original algorithm described by Skaar and Risvik [40] will be 

summarized at the end of this section.  

 
 
Fig. 4.2 Diagram of the genetic algorithm used throughout this manuscript for the generation of 
Bragg gratings. 
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Figure 4.2 displays a block diagram of the algorithm used for the synthesis of all the 

gratings presented in this manuscript. The first step in this process is the generation 

of N random gratings, usually random-width gratings. Each grating will have the 

same number M of layers. Making an analogy to the natural selection, the gratings 

represent the individuals and the layers represent their genes. Because all individuals 

of a species have the same number of genes, the gratings will also have the same 

number of layers. In the general case, each layer will have its own specific refractive 

index and thickness, which makes the genetic space practically infinite.  

For exemplification, the algorithm will be explained only for the case of random-

width gratings. In this case, each layer has its own thickness value wi,j, where i 

represents the index of each grating (i=1,2,..,N) and j the index of each layer 

(j=1,2,…,M) in a specific grating. The refractive index will have only two values: n1 

(for odd layers) and n2 (for even layers). The totality of layers is analogue to the gene 

pool of that species. 

The second step of the algorithm is represented by the calculation of the reflection 

spectra of all the gratings by the TMM method. Its application to discrete gratings 

was explained in section 3.3.2. Analogous to the natural selection, the spectrum of 

 
 
Fig. 4.3 Spectrum of an individual grating, along with the mesh used for the calculation of the fitness 
function corresponding to that individual grating. 
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each grating corresponds to the phenotype of an individual. The phenotype is the 

totality of observable characteristics or traits of an individual. It is in fact on these 

observable characteristics that the natural selection works its magic and not directly 

on the genes, which are only the unseen code producing those characteristics. Of 

interest to us are the values of reflectivity and GTD for a certain number P of 

wavelengths in a bandwidth interval. In Fig. 4.3 for example the spectrum of a 

grating is calculated for P=31 different wavelengths in the desired continuum 

interval. The values of the reflectivity R and GTD at those specific wavelengths will 

represent the phenotype of that grating. 

At the third step of Fig. 4.2, the fitness function F will assign to each phenotype 

(spectrum of grating i) a fitness value fi, representing, as in the natural selection 

scenario, the grating’s ability to give offspring in the next generation of gratings. 

Gratings with high values of fi will yield a great number of offspring, whereas those 

with low fi will very likely have none. That is why choosing a good fitness function 

is a key element in successful grating design. For the case presented in this 

manuscript, an ideal fitness function should reward simultaneous encounters of a 

constant negative GTD and a high reflectivity over a large bandwidth. A simple 

fitness function used in our simulations is defined in (4.1).  

.0,
1

 p

P

p
pp GTDeveryforGTDRF

 (4.1) 

The summing in (4.1) depends on the number P of wavelength sampling points used 

by the algorithm and it takes place only for the meshing points for which we have a 

negative GTDp<0 . Rp represents the reflectivity of the grating for those specific 

wavelengths. The values fi obtained after applying the function F to each grating i are 

then normalized and used as probabilities for each grating to find itself as a parent in 

the next generation of gratings.  

The choice of parents is realized at the forth step of Fig. 4.2 through a roulette wheel 

type algorithm. On a virtual wheel of fortune, each grating occupies a slice 

proportional to its fitness function. The wheel is turned and it is then stopped after a 

random time interval. The grating thus picked will be copied in the vector of parent-

gratings. The wheel is turned again until the size of the parent-vector reaches N. It is 

obvious that the gratings with higher values of the fitness function will be extracted 
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more than once by the algorithm. The gratings will then be coupled two by two 

inside the parent-vector, in the process creating N/2 pairs of parent-gratings. It can 

now be proceed to the next stage of the algorithm, which is the generation of child-

gratings.  

At the fifth step of Fig. 4.2 each pair of parent-gratings will give rise to a new pair of 

child-gratings. There are many methods of combining the layers of the parent-

gratings to obtain the children, but one in particular was extensively used in this 

paper, namely the uniform crossover, which most resembles the way genes combine 

in natural sexual reproduction. This method consists in choosing for each layer j of a 

child-grating the corresponding layer j of one of its parents, where the binary choice 

of the parent is realized randomly. As an example, let us consider the case 

represented in Fig. 4.4. At the left side of the picture the two parent-gratings are 

drawn in different colors. When analyzing the child-gratings at the right, it can be 

noticed that each of their layers has the color of the parent-grating which it copies. 

Very rarely, a mutation could be introduced at a random position in the layers of the 

child-gratings. In natural selection, a mutation introduces new genes in that 

population’s genetic pool. For the case of Bragg gratings, this will introduce a layer 

with a random width at a random position in a child-grating. This should be seldom 

operated as it has rarely a positive result on the fitness function. Having obtained a 

new population of N child-gratings, the algorithm can now start all over again. 

 
Fig. 4.4 Generation of two child-gratings after applying the uniform crossover method on two parent-
gratings 
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The decision to re-iterate the algorithm on the new generation of gratings is 

represented as the sixth step in Fig. 4.2. Passing from one generation to a new one 

will produce gratings with better fitness values, as the best gratings (those with 

highest fitness values) are favored at each step. After a certain number of iterations, 

the maximum value of the fitness function max(fi) corresponding to the best grating 

in that generation will converge to a constant value and it will not modify from a 

generation to the next. This is an indicator that the fittest grating was found and the 

program is stopped. Alternatively, the decision to stop the program and return the 

fittest grating obtained may be taken after a fixed number of iterations. Another 

fittest grating can be generated by starting again the algorithm with different initial 

conditions.  

In the initial genetic algorithm of Skaar and Risvik [40] the genes were represented 

not by the layers of a grating, but by the segments of the grating in which the 

complex coupling coefficient q could be considered constant. This segmentation of a 

grating is linked with the approximation employed at the beginning of section 3.3.2 

for the numerical analysis of non-uniform gratings. Other than the rare mutations 

applied on the layers of child-gratings, the authors also used a random generation of 

completely new gratings at every iteration of the algorithm.  

 

4.2.2 Discrete Layer Peeling 

The Discrete Layer Peeling (DLP) algorithm [41] is a method of grating synthesis 

first adapted by Feced et al. [49] from Digital Signal Processing (DSP) techniques of 

filter design [50]. Contrary to the Genetic Algorithm which can be programmed to 

generate any type of grating, the DLP may be employed only for the design of 

discrete gratings. If the layer widths in a grating are chosen so that the optical paths 

of radiation through each layer is constant along the length of the grating, then the 

Bragg grating becomes completely similar to a digital filter. This concept could be 

better understood by looking at Fig. 4.5. At the top of the figure, eight transitions in 

the refractive index mark the interfaces between different layers. Every layer has the 

same value a for the optical path length, which is the product between the width of a 

layer and its refractive index. This also means that the time required by a beam of 

light to travel across each layer has the same value for all the layers of the grating. If 
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a Dirac pulse of light is sent at the entry of the grating, then a detector placed on the 

same side will detect reflection pulses spaced by a temporal interval equal to 2a/c. 

This discretization (or sampling) of any signal injected at the entry point of such a 

grating makes that grating similar to a digital filter whose coefficients are the 

reflectivities between the layers. This observation makes justifiable the utilization of 

a digital filter design method for the synthesis of a discrete grating.  

The input information which is fed to the algorithm is a vector of the desired 

frequency response that our grating must have in order to widen the resonant modes 

of a cavity. It was established in the last chapter that this coincides with a reflection 

response having a high reflectivity and a negative GTD. An example of such a 

response is displayed in Fig. 4.6, in which the complex reflection response is 

unequivocally determined by the reflection amplitude and GTD - which is linked to 

the reflectivity phase by equation (3.13).  

The algorithm will then apply an Inverse Fourier Transform to translate this ideal 

frequency response into the time domain. The time response determines [41] the 

physical structure of the grating, so that is why in this stage the feasibility of a 

grating is decided. This correlation between the time domain and the physical 

structure is easily explained: as the signal propagates through the grating the time 

response (in this case the reflected signal) changes accordingly. Inversely, knowing 

 
 
Fig. 4.5 Representation of the analogy between a digital filter and a Bragg grating for which all the 
layers have the same optical path length 
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the time response of a grating would permit us to find its inner structure [33]. Not 

every imagined time response corresponds to a physical structure. That is why the 

Fourier transform of our desired frequency response will be called the ideal or the 

desired time response. At this stage it is not known how far from a physical real time 

response the ideal time response is. In order to become physically realizable, this 

response is passed through different mathematical functions (truncating, windowing 

and shifting). The number of physical layers of the grating is also decided at this 

stage. The realizable time response is then translated back into frequency domain by 

a Fourier Transform. Thus by starting with a desired frequency response it can be 

arrived, after a series of mathematical manipulations, to a realizable frequency 

response.  

Not every desired response is possible, and the mathematical reason for this is that 

certain time responses are anti-causal and thus could not be obtained by the use of 

real physical structures. As already stated in the preceding paragraph, there is a 

mathematical method for making a frequency response realizable, which equates 

with transforming its time response from an anti-causal to a causal one. Sadly, the 

method can not be used directly to serve our purpose, as one of its steps will 

determine a change in the sign of the GTD. This is because after shifting the time 

 
 
Fig. 4.6 Example of a type of ideal response used as input for the DLP algorithm. The black pointed 
line represents the desired reflectivity, while the blue pointed one is the desired GTD. 
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response, the phase derivative (thus the GTD) changes also. Feced’s method is 

suitable when the phase of the frequency response is not important and the amplitude 

is the only one that counts. That is why the approach of this manuscript was different. 

It is based on a mathematical treatment known as zero-padding method [50] which is 

used by engineers in DSP. Its purpose is to detect if the GTD of the real structure 

created by the DLP algorithm (without the mathematical transformations which 

would modify the GTD) remains the same as the desired one. A short explanation of 

how precisely it does that follows next. To specify a desired frequency response in 

numerical form, a process of sampling and quantization must firstly be employed. 

Let Q be the number of points used for the sampling of the desired frequency 

response. When using an Inverse Discrete Fourier Transform (IDFT) the Q complex 

numbers in frequency domain will correspond to approximately 2Q real numbers in 

the time domain. By zero-padding this signal at the right with an equal number (2Q) 

of zeros and then translating the entire 4Q signal back to frequency domain, what it 

will be obtained is a quantity of 2Q  complex numbers representing the same 

frequency response as the initial one, only now having twice the initial resolution. If 

the initial frequency response corresponds to a realizable (causal) filter, the process 

of zero-padding at the right will not change the form of the response, no matter how 

much the resolution is increased. On the contrary, if the desired frequency response 

corresponds to an anti-causal imaginary filter, the process of zero-padding at the 

right will greatly change the aspect of that frequency response, transforming also the 

GTD in the process. 

 

4.3 Results 

In this chapter the results of both synthesis methods for thin-film gratings will be 

presented. In the part reserved to the Genetic Algorithm a greater emphasis will be 

put on the integrated structures. The reason for this will be explained at the beginning 

of the next section, where a comparison between the performances of fiber and 

integrated generated gratings is presented. While the resulting gratings obtained by 

the genetic algorithm will not have perfect spectra, they could be nevertheless 

adapted for a continuum generation on a bandwidth of 8-15nm. Whereas the genetic 

algorithm strives with each new repetition to approach the perfect-spectrum grating 
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and in this process it generates intermediary optimum gratings, the Discrete Layer 

Peeling (DLP) method will only generate a grating if its desired spectrum is 

physically possible, otherwise the result may be totally unsatisfactory. 

 

4.3.1 Genetic Algorithm 

The random generation of gratings can be a powerful tool for grating synthesis even 

without the use of a genetic algorithm, if this method is applied in an efficient way. 

For example, a random population of N=1000 gratings could be created, and from 

within this population, the grating having the best characteristics can be directly 

chosen. In the case of the genetic algorithm, the random generation is only the first 

step of the method. For it to be efficient, the limits of the parameters’ variation 

should be carefully chosen. As our attention was set on the type of random-width 

gratings presented in Fig. 4.1(a), then the parameter whose limits must be carefully 

set is the width w of the layers. Considering the working wavelength to be around 

Ȝ=1550nm and the grating’s material to be InP, then it follows from equation (2.6) 

that the corresponding Bragg period is ΛB=240nm. Each layer of a uniform Bragg 

grating set to work at this center wavelength would thus have a width of 

wB= Λ/2=120nm, which we will call the Bragg width of a layer, from now on. One 

of the requirements for a successful synthesis method is obtaining a high reflectivity 

module (or amplitude). For this to happen, the interval of generated random widths 

should be chosen in such a way as to include also the calculated Bragg width wB. In 

the other case, the farther away that interval is chosen, the smaller the maximum 

possible reflectivity will be. If wmin represents the minimum possible width of a 

randomly generated layer and wmax the maximum one, it then follows that wmin< wB 

<w max. As for the dimension Δw=wmax–wmin of the random interval, having it too 

large would generate only small reflectivity gratings, even if the maximum 

theoretical reflectivity would be that of a uniform Bragg grating of period ΛB. On the 

contrary, a small dimension of Δw around the Bragg width wB would not offer 

enough variation to the population of random gratings. Keeping these aspects in 

mind, the random layer width was finally set within an interval of [wmin, 

wmax]=[15,150]nm for InP and [wmin, wmax]=[30,300]nm for a fiber grating.  
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After establishing the limits for the grating parameters, next important step is 

deciding which fitness function to use. As our main objective was finding a grating 

with a negative GTD, we started with a fitness function favoring a high negative 

GTD. It was soon observed that each time we employed such a function, the regions 

of very high negative GTD corresponded only with regions of zero reflectivity. A 

typical example is shown in Fig. 4.7 which displays the specter of a 200-layer grating 

found by a genetic algorithm after ten iterations. The initial population used by the 

algorithm was N=1000. It is noticed that the high negative value of GTD = −28ps 

corresponds to a region of zero reflectivity. In fact each time the algorithm searched 

for a high negative GTD grating, the returning spectrum had a corresponding region 

of null reflectivity. It thus became apparent that the two conditions (negative GTD 

and high reflectivity) are opposed. A fitness function which would try to conciliate 

both of the conditions was then searched. The final decision was set on the function 

already explained in equation (4.1) which weights every sampling point of negative 

GTD found in a certain bandwidth (let us say 1540-1550nm) with its corresponding 

reflectivity. Every genetic grating presented next will have the fitness function of 

(4.1) at the core of its generating algorithm. It is obvious that the function (4.1) does 

 
 
Fig. 4.7 Specter of a genetic grating obtained after 10 iterations by a genetic algorithm which 
searches for a steep negative GTD grating of 200 layers on InP. The reflectivity amplitude is shown 
in black, while the GTD in blue. 
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not take into account the request of having a constant negative GTD (the necessary 

condition for the large-band continuum). Increasing the strictness of the conditions 

on the side of the GTD would only diminish the reflectivity. The value returned by 

the fitness function (4.1) should be expressed in picoseconds, but in the following 

figures, the fitness-values have been normalized and are thus expressed in arbitrary 

units. It is not the absolute value of the fitness function that is important, but its 

evolution through successive generations created by the genetic algorithm, or its 

variation when changing the initial parameters of the method. 

Another point to establish before proceeding further is the reason behind the choice 

of the InP as the preferred grating material. Figure 4.8 shows a comparison of the 

evolution of the best fitness value in two populations of gratings having the same 

general characteristics, except for their material and thus their coupling coefficients. 

A maximum achievable value for the coupling coefficient has been used in both 

cases, this corresponding to a value of k=100cm-1 for the fiber case and to a value of 

 
Fig. 4.8 Comparison between the efficiencies of the genetic algorithm for the case of two populations 
of (a) fiber and (b) InP gratings. Both populations are comprised of gratings of M=200layers. To the 
top, the evolution of the best fitness value in function of the number of new generations created by 
the algorithm. To the bottom, the best spectra obtained in the 10th new generation. 
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k=1000cm-1 for the InP structures. The best fitness value is the maximum value 

returned by the fitness function, when applied to each individual in a specific 

population. Comparing the two plots at the top, it is obvious that the initial (when the 

number of iterations equals zero) best fitness value in the InP population is ten times 

higher than the best fitness value in the initial fiber population. Comparing then the 

evolution of this value in ten consecutive generations of genetic gratings it becomes 

also obvious that much better performances are obtained by applying the algorithm 

in the InP case. Finally, at the bottom of the figure, the resulting best spectra in the 

10th generation are displayed side by side for the two cases. It is clear that what is 

deciding the high performances obtained by the InP structures is their much higher 

reflection amplitude resulting from their much higher coupling coefficient. 

Surprisingly, the values for the negative GTD are very similar in the two cases. The 

slight advantage obtained by the fiber grating is explained by its lower coupling 

coefficient. It was already shown in Fig. 3.7 of the previous chapter that there is an 

inverse correlation between the coupling coefficient and the positive values of the 

GTD. But regarding our choice of InP gratings, the much greater rise in the 

reflectivity makes the little loss in the GTD unimportant. Not only the performances 

of InP gratings regarding their fitness values are better comparing to the fiber ones, 

but there is also the fact that the real InP structures come much closer to the discrete 

thin layer model used in the simulations of this manuscript. 

Now that a decision has been made on the best material and fitness function to be 

used in the simulations, and also on the width-span for each layer, the question now 

goes on the number of layers our synthesized InP grating should have. As it will be 

soon acknowledged, this is a more difficult question. A direct approach to this 

question is presented in Fig. 4.9. In this figure, the best fitness value in a population 

of N=1000 random gratings is calculated before (black line), and after a genetic 

algorithm has been applied to that population (grey line). For the two cases, the 

variation of the best fitness value is plotted in function of the number of layers in the 

gratings of each population. The amelioration of the maximum fitness value after 

applying the genetic algorithm may not seem impressive at first, but a more detailed 

look will show us otherwise. Let us take the example of the 200-layer InP gratings. 

Before applying the genetic algorithm (G.A.) the maximum fi tness value obtained in 

a population of N=1000 gratings was fmax=0.7·107. At the 10th new generation 
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created by the genetic algorithm the maximum fitness value becomes fmax=1.8·107. 

The entire evolution of the fitness value from the first to the last generation is shown 

in Fig. 4.8(b). The change in the maximum fitness value after applying the genetic 

algorithm was compared to the maximum fitness value obtained after increasing the 

initial random population of gratings. The purpose was to see how many random 

 
Fig. 4.9 The variation of the fitness-value of the fittest grating in a population of N = 1000 InP 
gratings in function of the number of layers of the gratings in that population. The black line is for 
the initial random population, while the grey line corresponds to the 10th generation created by a 
genetic algorithm (G.A.). 
 

 
 
Fig. 4.10 Results after running the genetic algorithm on a population of N=1000 gratings of M=1000 
layers each: to the left, the evolution of the best fitness value in function of the number of new 
generations created by the algorithm; to the right, the best spectrum obtained after 10 iterations of the 
genetic algorithm. In the plot at right, the reflection amplitude is represented in black, while the GTD 
in function of wavelength is displayed in blue. 
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gratings must be generated (having the same number M=200 of layers) until we 

randomly find a grating having the same fitness value as that generated by the 

genetic algorithm. Well, the maximum value of the fitness value found in a 

population of N=30.000 random gratings of M=200 layers was fmax=1.35·107, still 

way below the value of that grating generated by the genetic algorithm which started 

from a population of only N=1000 gratings. At that point of N=30.000 the random 

generation was stopped as it was clear it would not easily match the level of the 

genetic generation.  

At the other end of Fig. 4.9 there is the case of the long gratings of M=1000 layers. 

The maximum fitness value obtained in a random population of such N=1000 

gratings is very high, fmax=9.3·107, much higher than the score obtained for the case 

of M=200 layers. After applying the genetic algorithm on this initial population, and 

thus moving from the black to the grey line in Fig. 4.9, the maximum fitness value 

reaches a whooping fmax=15·107. But there is a price to pay for this progress in the 

fitness value. Figure 4.10 shows the evolution of the best fitness value after 10 

iterations of the algorithm and also the best spectrum obtained at the 10th new 

generation. Comparing this spectrum to the one of Fig. 4.8(b), it can be noticed that 

when increasing the values of the reflectivity corresponding to a region of negative 

GTD, there is a simultaneous much higher increase in the reflectivity corresponding 

to a positive GTD in the surrounding regions. This makes very difficult the selection 

of our region of interest when building a resonant cavity with such a reflector. The 

resonant modes will be placed at the wavelengths corresponding to positive GTDs 

while the regions of interest, having negative GTDs will find themselves canceled. 

On the contrary, looking at the spectrum of Fig. 4.8(b), the regions of positive GTD 

and higher reflectivity are far enough from our region of negative GTD to be able to 

cancel them out by using some filters or the right gain medium. That is why choosing 

the number of layers for the grating is such a delicate problem. From one point of 

view, high negative GTDs are needed to enlarge resonant modes of long Fabry-Perot 

cavities, cf. equation (3.20). On the other hand, when this is achievable, the regions 

of negative GTDs are surrounded by regions of high reflectivity positive GTD, which 

can not be easily suppressed. Our preference was thus for the gratings which were 

shorter than M=400 layers. Even though they are characterized by smaller 
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reflectivities and by smaller negative GTDs, their spectrum shapes can be more 

easily adapted for continuum emission. 

Figure 4.11 shows the refractive index variation of the best fitted grating of M=200 

layers, synthesized after ten iterations of a genetic algorithm on a population of 

N=1000 structures. Its spectrum was already presented in Fig. 4.8(b). Another way 

of presenting the reflectivity spectrum of this grating is by replacing the GTD 

directly with the phase difference after reflection. This representation is used in Fig. 

4.12(a), where the blue line is the phase difference of the reflected radiation of 

wavelength Ȝ compared to the radiation of wavelength Ȝ0=1530nm. For comparison 

Fig. 4.13(a) shows an analog representation of the reflection spectrum, but for a 

uniform Bragg grating of 100 periods (200 layers) having the same coupling 

coefficient k=1000cm-1. Whereas the phase of the Bragg reflector is uniformly 

increasing with the wavelength, the phase of the genetic grating has an interval of 

ΔȜ=8nm centered at 1543nm for which the phase is descendant. This interval 

corresponds to the region of negative GTD in Fig. 4.8(b).  

 
Fig. 4.11 Refractive index variation of the 200-layer grating synthesized by the genetic algorithm and 
whose spectrum was plotted in Fig. 4.8(b) 
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In the examples discussed above, ten iterations of the algorithm were considered 

enough, as after this number of repetitions all new generated gratings were usually 

having very similar layer-characteristics. Continuing their combination would not 

have yielded very different fitness functions. 

The grating shown in Fig. 4.11 is then used as a mirror in a resonant cavity. The 

feed-back is assured on the other side of the cavity by a high reflectivity metallic 

mirror of reflection coefficient equal to R=0.9. For a specific length of the resonant 

cavity (when the cavity’s phase variation with Ȝ is canceled by the grating’s phase 

variation) the entire structure has a normalized emission spectrum as that shown in 

Fig. 4.12(b). The specific or continuum length of the cavity is calculated from 

equation (3.20) and it depends on the highest negative value of the GTD. Replacing 

thus in equation (3.20) a value of GTD=−0,235ps  for the group time delay, then 

the calculated length of the resonant cavity is L0≈11ȝm . This is the length of the 

 

Fig. 4.12 Reflection spectrum of a 200-layer genetic grating and the resonant emission of a 
continuum cavity formed with that grating as a mirror. 
 

Fig. 4.13 Reflection spectrum of a 200-layer (100-period) uniform InP grating and the resonant 
emission of a resonant cavity formed with that grating as a mirror. The coupling coefficient of the 
grating is k=1000cm-1. 
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cavity used for the simulation in Fig. 4.12(b). Keeping the same cavity length and 

replacing the synthesized grating by the uniform Bragg (UB) grating of Fig. 4.13(a), 

the spectrum of the cavity becomes as in Fig. 4.13b. What it can also be noticed in 

Fig. 4.12b is the almost complete cessation of the phase variation between 1539nm 

and 1547nm, the interval in which the negative GTD of the grating cancels the 

positive GTD of the rest of the cavity. In other words, the round-trip phase of the 

cavity keeps constant on this 8nm bandwidth because the natural increase of the 

round trip phase with Ȝ is balanced by a similar decrease of the grating reflection 

phase. It can also be observed that the saddle of constant round-trip phase (1539-

1547nm) is linked to two nearby reflectivity peaks of increasing phase (1536-

1539nm and 1547-1550nm) making the entire emission bandwidth to reach a span of 

almost 15nm. 

The two normalized emission spectra which were presented in Fig. 4.12(b) and Fig. 

4.13(b) were simulated under threshold considering an active medium placed inside 

the cavity. The active medium has a uniform spontaneous emission over all 

wavelengths. The interference caused by the consecutive round trips of this emission 

through the cavity generates the spectra of Fig. 4.12(b) and Fig. 4.13(b). The gain 

coefficient α of the medium is considered equal to zero. Different forms of the gain 

coefficient can be imagined so that the small valley in Fig. 4.12(b) formed in the 

negative GTD region would be leveled out with the two surrounding peaks. For more 

information on the method used to generate the two normalized spectra, the reader 

can refer to the paper of Soda and Imai [51]. 

The reason why one could not design a grating characterized by a negative GTD in a 

spectral region of high reflectivity may be found only after using another method of 

grating synthesis, called Discrete Layer Peeling. 

 

4.3.2 Discrete Layer Peeling 

As explained in section 4.2.2, the first step of this method is to feed the algorithm 

with a desired frequency response. In this particular case, the desired frequency 

response consists of having a maximum of amplitude simultaneously with a negative 

GTD, as shown in Fig. 4.6. As explained in the introductory part to the Discrete 
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Layer Peeling (DLP) method, the frequency domain response is entered as a set of Q 

complex numbers, having both amplitude and phase, which are sampled from that 

response for a set Q of wavelengths. After transforming this frequency vector into 

the time domain, a set of 2Q real numbers is obtained, which contains enough 

information for the construction of a grating structure by DLP. At this point though, 

there is the possibility that the reflectivity spectrum returned by the synthesized 

structure may coincide with the initial desired spectrum only in the sampling points, 

and that between these points its behavior may be completely erratic. To check 

whether this is the case, the zero padding method is used, increasing the resolution 

(as explained in section 4.2.2) until a stable figure is obtained.  

Basically, the algorithm was fed with different sampled vectors of ideal responses as 

the one in Fig. 4.6. Different values for the desired GTDd were used, whereas the 

reflectivity was always kept to a maximum value close to 100%. The filter structure 

returned by the algorithm was then analyzed again in the spectral domain. When 

analyzing the resulting spectrum only for the wavelengths corresponding to the 

sampling points of the initial response vector, the values for the resulting GTDr and 

reflectivity seem always to exactly correspond with the ideal ones.  But when 

increasing the resolution a few hundred of times, there can be seen that the resulting 

response is not always equal to the one desired by us. And this difference, if it exists, 

can dramatically change the value of the real GTDr of the structure. For example if 

the phase for the sampling wavelength Ȝj has a phase value of φ and in the next point 

Ȝj+1 (Ȝ j +1  > Ȝ j ) will reach a value of φ−δφ the GTDr of the real structure will be 

calculated as negative. But then again, if  after increasing the resolution it is realized 

that between the two points there existed a phase shift of 2π so that in fact the phase 

 
Fig. 4.14 The group time delay of the synthesized structure (GTDr) created by a DLP algorithm, when 
it is fed with different ideal responses having different desired GTD (GTDd).  
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in the point Ȝj+1 is equal to φ+2π−δφ  then the real GTDr will be in fact positive.  

In Fig. 4.14 the resulting gratings’ GTD (called GTDr) are plotted in function of the 

values of the desired GTD (called GTDd) which were used as entry data for the 

algorithm. The two plots correspond to the negative, respectively positive values of 

the desired GTDd. As it can be seen on the plot to the right, every desired positive 

GTDd response translates itself into a realizable structure having an identical value of 

the group time delay (GTDr =GTDd). In the same time a maximum value for the 

reflectivity was obtained. On the other hand, each time the DLP algorithm must 

design a high reflectivity Bragg grating having a negative GTD in the reflection 

bandwidth (left plot of Fig. 4.14), the resulting grating will have in fact a very high 

positive GTD (as revealed after increasing the resolution of the resulting spectrum). 

As the success of this algorithm depends on the conformity of the desired spectrum 

to the causality principle, it follows that filter responses having negative GTDs and 

maximal reflection amplitudes can not be produced by real linear structures. This 

also confirms our supposition that the structures returned by the genetic algorithm 

are among the best which can be realized by means of linear reflectors, even if the 

regions of negative GTD do not appear simultaneously with peaks of the reflectivity. 
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Chapter 5  

Measurements 

 
 

 

 

 

 

This chapter will succinctly present the experimental measurements on a series of 

resonant cavities formed with chirped gratings. The only chirped gratings that could 

be employed were the linearly chirped gratings presented in Chapter 3. Nevertheless, 

we have been able to find some interesting applications for this simple type of Bragg 

gratings. The hybrid cavities were used as tunable lasers and large band amplifiers, 

whereas the integrated cavities were used in experiments of injection locking. 
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5.1 Hybrid cavity 

The hybrid cavity was already described in Section 3.2.1 before presenting the 

simulations on resonant cavities formed with LCGs. The simulations of Chapter 3 

already shown that there is no way of producing a continuum emission spectrum 

using a LCG in conjunction with a resonant cavity, contrary to the initial supposition 

of the Continuum project presented in Section 2.2. It was later found in Chapter 4 

that only some type of random-layer structure, generated by a genetic algorithm, was 

able to enlarge the emission spectrum of a Fabry-Perot cavity. Despite this later 

finding, it was not possible to obtain a real prototype of those synthesized gratings in 

due time, and thus the experimental part of the project revolved around finding new 

applications for the already delivered linearly chirped gratings. 

Even though it was clearly shown in the simulations that a continuum can not be 

obtained by LCGs, some experiments were realized in this purpose by a fellow 

colleague of SUPELEC, Xunqi Wu, who presented this study in his PhD thesis [19]. 

It is not our intention to concentrate the discussion on this topic, even though some 

open points remain as to whether his measured spectra were single-mode or multi-

mode. Without an experimental probing into the nature of those spectra obtained by 

Wu [19] from resonant cavities formed with LCGs, we will trust the TMM 

simulations and consider them multi-mode.  

 

5.1.1 Description 

Section 3.2.1 presented a hybrid type of cavity formed between a metallic mirror and 

a LCG. That type was the most explored one throughout the simulations of this 

manuscript, being used in both Chapters 3 and 4. In this experimental section a 

 
 
Fig. 5.1 The hybrid cavity model used in the experimental measurements. The metallic mirror which 
formerly bordered one side of the cavity was replaced by a second identical LCG. 
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somehow different model of cavity will be used. As shown in Fig. 5.1, the metallic 

mirror which bordered the resonant cavity of Fig. 3.2 is now substituted by a second 

LCG, identical to the one used at the right side of the cavity. Some typical spectral 

characteristics for the SOA and LCGs are shown separately in Fig. 5.2. In the plot to 

the right, the reflection bandwidth of the LCGs is located between 1530-1570nm. 

The Reflectivity peaks at around -3dB, or at around 50%. In the plot to the left, the 

gain of a SOA is plotted for different source currents. It can be noticed that for high 

currents the SOA gain keeps almost constant in the reflection bandwidth of the 

gratings. Also it can be noticed that at around 200mA the SOA reaches gain 

saturation. 

The configuration presented in Fig. 5.1 was among the configurations considered 

capable of continuum generation at the beginning of the thesis. The theoretical 

approximations which were used for the case of a cavity formed between a metallic 

mirror and a LCG were presented in section 2.2.3. In that section, equation (2.8) 

linked the length of the supposed continuum cavity L0 to the chirp of the grating CΛ. 

The same equation can be adapted for the case of the cavity of Fig. 5.1. Considering 

L0 the distance between the two LCGs and noting with CΛ the chirp of both LCGs, 

equation (2.8) becomes: 

.
0

0
0




Cn
L


 (5.1) 

In the experiments of Wu [19], different cavity lengths have been used, including one 

equal to the value calculated in (5.1). The measured spectra were quasi-identical for 

 
Fig. 5.2 Plots showing typical spectral characteristics of SOA and LCG. To the left, the amplification 
of the SOA in function of wavelength is plotted for different source currents and for very low levels 
of signal power. To the right, the reflectivity amplitude of the LCG is measured in function of the 
wavelength. The LCG is a fiber grating of chirp C=100nm/cm, coupling coefficient k=80cm-1 and 
R=50%. 
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all cases, showing no trace of a magical cavity length for which the spectrum would 

become suddenly enlarged. A continuum effect may still have been produced, but in 

this case, it was hidden by the lack of resolution of the measuring equipment. 

Replacing afterwards the two LCGs with different ones having different reflectivities 

and chirps, the same independence of the spectra to the cavity length was noticed. 

This behavior confirms that the initial continuum approximation explained in section 

2.2.3 is not verifiable experimentally. 

 

5.1.2 Tunable Laser 

This section will describe an original application of resonant cavities built with 

LCGs, which may become the object of a separate patent application. Starting with 

 
 

 
 
Fig. 5.3 Schematic of a tunable laser formed between two LCG. Inside the cavity a filter is used to 
manually set up the desired wavelength. 
 

 
Fig. 5.4 Superposed emission spectra obtained by manually adjusting the filter of Fig. 5.3 for 
different wavelengths on the ITU grid 
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the tunable laser described in section 2.2.2 which resides at the origin of the 

Continuum project, we tried to imagine an alternative way of shifting the emission 

spectra of a resonant cavity. The structure of Fig. 5.3 was thus created. The filter, 

having a 3dB-bandwidth of 1nm, has the role of manually setting the radiation 

wavelength to any desired value contained in both the reflection bandwidth of the 

grating and the filter’s frequency domain. The reflection bandwidth was shown in 

Fig. 5.2 as being the interval 1530-1570nm, whereas the filter’s variation domain 

consisted of the interval 1525-1565nm. The intersection of the two will then consist 

of the spectral domain of 1530-1565nm. By manually turning the adjusting knob of 

the filter, the spectrum will be centered on any wavelength in this later interval. A 

superposition of such spectra obtained after successive adjustments of the filter’s 

knob is shown in Fig. 5.4. The frequency span between two consecutive peaks of Fig. 

5.4 is 50GHz. Each peak was specifically chosen to match the ITU-comb frequencies 

used in C-band WDM communications. When the filter is set outside the reflection 

bandwidth of the gratings (in the interval 1525-1530nm) there is no laser radiation 

present. Only the LCGs assure the feedback necessary for a laser emission. Each 

separate plot of Fig. 5.4 was rendered by an optical analyzer after sampling 1000 

points over the entire 40-nm observation window.   

A zoom onto the shape of a single peak from Fig. 5.4 is then represented in black in 

Fig. 5.5. Using only the optical analyzer it would be impossible to decide whether the 

 
 

 
 

Fig. 5.5 Superposed emission spectra of the cavity in Fig. 5.3 when an external laser is injected inside 
the cavity: a. no external power (black); b. 3mW external power (blue); c. 5mW external power (red). 
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emission is single-mode or multi-mode. An external (also called master) laser will be 

injected into the cavity from the left and it will thus be used to dissect the resonant 

cavity’s emission (which can also be called slave emission). In addition to the 

external laser, a fast photodiode and an electrical analyzer were employed on the 

other side of the cavity. After receiving the radiation going out of the cavity to the 

right, the photodiode would transmit the resulting electrical pulse to the electrical 

analyzer for plotting.  

The resulting electrical spectra are displayed in Fig. 5.6. For each of the electrical 

spectra, the corresponding optical spectrum is also displayed in Fig. 5.5. In the first 

situation presented in the two figures the external (master) laser is turned off.  The 

                                                        
 
 
Fig. 5.6 Electrical spectra plotted by a fast photodiode receiving as input the optical radiation exiting 
the cavity of Fig. 5.3. An external laser is injected into the cavity from the other side, having: a. no 
external power (black); b. 3mW external power (blue); c. 5mW external power (red). 
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optical spectrum of Fig. 5.5 seems to be continuous, while the electrical spectrum of 

Fig. 5.6 is periodical. The electrical spectrum should represent the Fourier transform 

of any signal which modulates the slave laser, but because in the present case there is 

no external modulation of the cavity laser, there still remains the question of the 

origins of the periodical spectrum in Fig. 5.6.  

The explanation for the electrical pattern could be found only if the optical spectrum 

is supposed multi-mode. In this case, the free spectral range ΔȜ (the distance between 

two consecutive modes) of the cavity is calculated as: 

.
2 0

2
0

Ln

 
 

(5.2) 

Passing the quantity of (5.2) in frequency domain, the free spectral range becomes: 

.
2 0Ln

c
f 

 (5.3) 

In equation (5.3) Δf is the free spectral range expressed in frequency domain as a 

function of the length of the cavity L0. Replacing a value of L0≈5m in equation (5.3) 

the calculated value for the free spectral range becomes Δf≈20MHz , coinciding with 

the period value noticed in Fig. 5.6. This means that the temporal variation in the 

amplitude of the radiation detected by the photodiode has its source in “the beating” 

between the different modes of the cavity. 

In the second case, represented in color blue in both Fig. 5.5 and 5.6, the external 

laser having a power of 3mW and a wavelength of Ȝ=1551.6nm is injected into the 

cavity very close to the cavity’s central wavelength of Ȝ=1550.9nm. A maximum 

spectral detuning of 1nm between the cavity laser and the external laser is necessary 

in order for the external radiation to pass the cavity-filter. In this situation, the optical 

spectrum of the cavity separates itself clearly in multiple modes. On the other hand, 

the amplitude of the electrical pattern reduces proportionally to the injected power. 

A complete disappearance of the electrical pattern is noticed for an injected external 

power of 5mW, as displayed at the bottom of Fig. 5.6. Correspondingly, looking at 

the red plot of Fig. 5.5, a complete disappearance of the optical cavity spectrum is 

also recorded. The only peak observed in this situation is the one corresponding to 

the external laser. What happens inside the cavity is that the entire electrical energy 



Chapter 5 
Measurements 

108 

represented by electron-hole pairs will be used to amplify the external laser only. It 

will rest no more energy into the active medium for the generation of its own 

stimulated radiation. Owing to this effect, the resonant cavity could be used as an 

amplifier for an external signal injected into the cavity. The amplification will not be 

due to an injection locking effect, as it will not depend on the polarization of the 

injected signal and it will span a large bandwidth. This different application will be 

the subject of the next section. 

 

5.1.3 Amplifier 

It was seen in the preceding section that when a high power radiation is injected into 

the cavity of Fig. 5.4 very close to the bandwidth of that cavity’s proper laser 

emission, all energy will be used for the amplification of the external radiation, while 

the cavity’s own laser emission will be stopped. The presence of a filter as the one in 

Fig. 5.3 will make the operation of the amplifier more difficult, because the filter’s 

wavelength should always operate on the wavelength of the external laser. In this 

section therefore the simple schematic of Fig. 5.1 will be preferred. The amplifier 

will thus consist of a SOA placed between two LCGs of 50% reflectivity. An 

external laser of different amplitudes and wavelengths will be injected into the cavity 

of Fig. 5.1. On the other side of the cavity, the peak signal will be measured with a 

spectral analyzer. In Fig. 5.7 (a) a 0.5mW external laser is first used. The red dashed 

line indicates the level measured by the analyzer when no resonant cavity is present. 

The resonant cavity of Fig. 5.1 is then interposed between the external tunable laser 

 
 

 
Fig. 5.7 Plots showing amplitude of the external laser in function of wavelength, after passing 
through the resonant amplifier of Fig. 5.1. Two different levels (marked in a red dashed line) of the 
external laser have been used as inputs: a. 0.5mW; b.10mW.  
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and the analyzer. The level of signal now detected by the analyzer is marked with a 

solid black line. When the tunable laser emits out of the Bragg gratings bandwidth 

(outside of the 1530-1570nm interval) the external radiation will pass through the 

SOA only once. It should be noted that the type of SOA employed for the plots of 

Fig. 5.7 differs from the one in Fig. 5.2. In Fig. 5.7 the dependence of the gain to the 

wavelength is very pronounced.  

The interesting region is represented by the Bragg bandwidth, comprised between 

1530nm and 1570nm, in which the external laser passes through the SOA multiple 

times before exiting the cavity. In this interval, the amplitude measured by the 

analyzer seems to vary greatly in time. This variation in time is recorded by the 

analyzer as a variation with the wavelength Ȝ, as the amplitude corresponding to each 

wavelength is recorded during a couple of seconds before the external laser emits on 

the next wavelength. In fact, when the external laser is left to emit on a chosen 

wavelength long enough, the amplitude of the signal recorded by the analyzer will 

randomly oscillate between the two envelopes plotted in dashed black line in Fig. 5.7.  

Between the two envelopes, the middle dashed blue line shows the amplitude of the 

signal if the Bragg gratings were not present at all. It is the amplitude of the signal 

after passing through the SOA alone.  

The cause for the temporal instability observed in the Bragg bandwidth is not well 

understood, but it may be linked to mode-competition of the cavity laser. As the 

signal is not strong enough to absorb the entire energy of the electron-hole pairs in 

the cavity, there are moments when some of this energy will serve to amplify the 

spontaneous emission of the SOA reflected back into the cavity by the Bragg 

gratings.  

Oppositely, when increasing the power of the external laser to 10mW as in Fig. 5.7 

(b) the level of radiation measured at the output of the cavity will not increase with 

the same quantity comparing to the case in Fig. 5.7 (a). This is because of reaching 

the saturation of gain offered by the SOA. In this situation, there will be of no benefit 

to use such a resonant cavity for the amplification of an external signal, as the 

amplitude at the output will be lower than the amplitude at the input side of that 

cavity (as the black line is under the red one for almost all wavelengths). At the same 

time with a reduction in the gain for all the wavelengths, there is also a reduction in 
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the instability seen in the reflection bandwidth of the Bragg gratings. Looking at the 

interval between 1530nm and 1570nm, a lowering of the superior instability envelope 

is noticed. This is due to the fact that increased levels of the external laser will absorb 

all the energy of electron-hole pairs. The level of spontaneous emission inside the 

cavity will simultaneously decrease, which will in turn translate into greater stability. 

To conclude this section, a resonant cavity built with LCGs can greatly amplify an 

external signal and act as an amplifier only for low levels of injected power, under 

the level required for the SOA saturation. In the spectral region corresponding to the 

Bragg reflection of the gratings, the level of amplification can become 5dB greater 

than the amplification recorded by the SOA alone. On the other hand, spontaneous 

emission reflected back into the cavity by the Bragg gratings will be the source of a 

great level of amplification instability. The only way to counteract this effect is by 

increasing the level of the external radiation until all the electrical carriers inside the 

cavity are saturated. Sadly, this will also decrease the amplification performances of 

the resonant amplifier to the point that it would render its use futile. 

 

5.2 Integrated cavity 

The integrated type of cavity was described in section 2.2.3. As the integrated cavity 

was not directly used in our experiments, this small section will only try to 

reinterpret an experiment described in the related work of Xunqi Wu [19] regarding 

InP cavities. But before going further, it is worth remembering here that this type of 

cavity was the preferred one in the simulations involving the genetic algorithm, as 

the greater coupling coefficient allowed greater reflectivities with smaller number of 

layers.  

A great deal of integrated cavities produced at the beginning of the Continuum 

project was studied by Xunqi Wu in his PhD thesis [19], especially in experiments 

reviewing the benefits of apodized gratings. But one particular experience described 

at the end of its PhD manuscript caught our attention and made us re-consider it in 

the new light of the new experiments (described in Section 5.1.3) on hybrid cavities. 
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5.2.1 Amplifier 

In that experience, an external laser is injected inside a resonant cavity realized on 

InP. Firstly, the Fabry-Perot specter of the cavity will be easily distinguished with an 

optical spectrum analyzer, as the distance between the modes will be wide enough. 

The external laser is then injected at equal distance between two consecutive modes 

of the cavity and the difference (called SMSR: Single Mode Suppression Ration) 

between its amplitude and the amplitude of the nearest cavity modes is measured. 

The external laser will then be shifted toward one of the cavity modes. The SMSR 

will keep constant until a certain distance between the external laser and the cavity 

mode is reached. At that point the cavity emission will shift so that the nearest cavity 

mode will be assimilated into the external laser emission. The SMSR (measured now 

as the difference between the external laser and the next closest cavity mode) will 

suddenly rise. This phenomenon of shifting the cavity emission by using an external 

laser is called injection locking. The shifting appears simultaneously with a sudden 

drop in the cavity emission, which translates into a rise of the SMSR. Figure 5.8 

shows a set of the measurements on an integrated cavity done by Wu. The rise of 

SMSR is obvious as the cavity passes from the unlocked (left) to the locked state 

(right). 

In the literature [52-54] the injection locking effect has found applications in 

improving the modulation efficiency or the operation bandwidth of locked (slave) 

 
 

 
Fig. 5.8 Plots showing the injection locking phenomenon observed in the integrated cavities 
experiments of Wu. At the left the external laser (blue flash) is not close enough to a cavity peak to 
lock it, while at the right the cavity emission drops abruptly as a consequence of the locking. The 
SMSR increases from left (13dB) to right (34dB) as a consequence of the locking. 
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lasers. All the applications are related to improving one or other characteristic in 

slave lasers. Once with the experiment of Wu, it may become possible in fact to act 

not to improve the slave laser (the one which is locked) but the external master laser 

(the one which is locking). More precisely, it may become possible to amplify the 

external laser when the cavity laser is locked into it, similar to the experience 

described in section 5.1.3 for a hybrid cavity. Sadly, the experiments of Wu [19] 

offer us information only on the variation of the SMSR with the injected power, 

when the lasers are already in the locked state. It does not go into details regarding 

the absolute amplification of a master laser after it locks a Fabry-Perot laser. Figure 

5.8 is the only set of measurements that records the evolution from the unlocked to 

the locked state. Judging from it, one would notice that the master laser (blue flash) 

will keep almost the same amplitude when passing from the unlocked into the locked 

state, while the cavity modes will drop altogether. There are however no other 

experiments to document the effects of this transition on the master laser.  

When Wu realized the above experiment there were no indications on the eventual 

amplification that a maser laser could benefit from, when in the locking state. 

Meanwhile, the amplification observed while experimenting with external optical 

injection in a hybrid cavity (section 5.1.3) led us to review the experiments of Wu on 

integrated cavities in a new light. It is our opinion now that if different powers had 

been used, the same degree of amplification would have been obtained as for the 

hybrid cavity, with the advantage of greater stability. 
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Conclusions and Perspectives 

 

6.1 Conclusions 

The theoretical part of this manuscript was focused on finding new simple 

alternatives to Supercontinuum sources in WDM applications. Chapter 2 detailed the 

novel idea of the Continuum projected, aimed at creating a resonant cavity capable of 

producing a large continuum spectrum over the entire C-band. This cavity was going 

to have one of the metallic reflectors replaced by a linearly chirped grating (LCG) 

having the role of canceling or enlarging the resonant modes of the cavity. 

Chapter 3 firstly finds the necessary and sufficient condition for a LCG to enlarge the 

modes of a resonant cavity. Then it presents a series of simulations on all 

technologically realizable LCGs, in search of a grating possessing the required 

characteristics. Three parameters have been varied when searching for a suitable 

LCG, with no real success. It was shown the group time delay (GTD) of a LCG is 

proportional to the chirp and the length of a grating and inversely proportional to its 

coupling coefficient. It was found that the GTD is always positive in the reflection 

bandwidth of the LCG. This is the first study of the variation of the GTD with the 

parameters of a LCG. 

In Chapter 4 the idea of resonant modes enlargement is tested on random-width 

gratings. As an exhaustive search of all random gratings would have been impossible, 

a novel idea was to adapt a genetic synthesis method (specifically created for 

continuous gratings) to generate discrete-layer gratings. We decided applying a 
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genetic algorithm on some initial small random populations to synthesize new 

structures according to our needs. In terms of performance, the gratings thus 

synthesized were scoring much higher than any other grating coming from 

populations (even much larger) on which the genetic algorithm has not been applied. 

The InP structures were considered more suited than the fiber ones as reflectors for 

resonant cavities. Finally, at the end of the section on the genetic algorithm, the 

influence of such a genetic grating on the spectrum of a resonant cavity is being 

analyzed. A mode enlargement of around 15nm was noticed using such a structure. 

At the end of the chapter, the results after using a second synthesis method (DLP) are 

presented. At this point it becomes apparent that the principle of causality may be the 

culprit for which a perfect continuum reflector could never be constructed. 

The experimental part of the thesis is concerned with finding new applications for 

resonant cavities formed between LCGs.  Adding a tunable filter in such a cavity will 

create a tunable laser. This type of application is the most suited for such resonant 

structures, as confirmed by earlier experiences of Bergonzo et al. The cavity formed 

between LCGs was also tested as a resonant amplifier for different levels of an 

external signal. For low powers of an external carrier, the amplification reached good 

levels but was instable, while for powerful carriers, the amplification was stable, but 

negative. 

 

6.2 Perspectives 

The typical emission generated by a resonant continuum cavity formed with a 

genetic grating was shown in Fig. 4.12(b). In the simulations the active gain was 

considered uniform along all wavelengths. Other gain functions will further more be 

able to equalize the shape of the emission.  

As this was the first time a genetic algorithm was used for the synthesis of a discrete-

layer grating, its use may be extended for other applications concerning this type of 

gratings. This may be the case for the Bragg reflectors of a VCSEL. 

Finally, regarding the practical use of a resonant cavity formed between LCGs as an 

amplifier, the external lasers used in our study did not contain any signal. A study 

detailing the effects of a resonant amplifier on the modulation bandwidth or 
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modulation efficiency of a master carrier containing different signal frequencies 

would also be interesting. In past research of the effects of injection locking on signal 

modulation, the signal was always contained in the slave laser. Translating the signal 

onto the master laser would be thus a novel approach. 
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