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Abstract

Data replication in large-scale data management systems

In recent years, growing popularity of large-scale applications, e.g. scientific experi-

ments, Internet of things and social networking, led to generation of large volumes

of data. The management of this data presents a significant challenge as the data

is heterogeneous and distributed on a large scale.

In traditional systems including distributed and parallel systems, peer-to-peer

systems and grid systems, meeting objectives such as achieving acceptable per-

formance while ensuring good availability of data are major challenges for service

providers, especially when the data is distributed around the world. In this context,

data replication, as a well-known technique, allows: (i) increased data availability,

(ii) reduced data access costs, and (iii) improved fault-tolerance. However, replicat-

ing data on all nodes is an unrealistic solution as it generates significant bandwidth

consumption in addition to exhausting limited storage space. Defining good repli-

cation strategies is a solution to these problems.

The data replication strategies that have been proposed for the traditional sys-

tems mentioned above are intended to improve performance for the user. They are

difficult to adapt to cloud systems. Indeed, cloud providers aim to generate a profit

in addition to meeting tenant requirements. Meeting the performance expectations
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of the tenants without sacrificing the provider’s profit, as well as managing resource

elasticities with a pay-as-you-go pricing model, are the fundamentals of cloud sys-

tems.

In this thesis, we propose a data replication strategy that satisfies the require-

ments of the tenant, such as performance, while guaranteeing the economic profit

of the provider. Based on a cost model, we estimate the response time required

to execute a distributed database query. Data replication is only considered if, for

any query, the estimated response time exceeds a threshold previously set in the

contract between the provider and the tenant. Then, the planned replication must

also be economically beneficial to the provider. In this context, we propose an eco-

nomic model that takes into account both the expenditures and the revenues of

the provider during the execution of any particular database query. Once the data

replication is decided to go through, a heuristic placement approach is used to find

the placement for new replicas in order to reduce the access time. In addition, a dy-

namic adjustment of the number of replicas is adopted to allow elastic management

of resources.

Proposed strategy is validated in an experimental evaluation carried out in a sim-

ulation environment. Compared with another data replication strategy proposed in

the cloud systems, the analysis of the obtained results shows that the two com-

pared strategies respond to the performance objective for the tenant. Nevertheless,

a replica of data is created, with our strategy, only if this replication is profitable

for the provider.

Keywords: Cloud Computing, Database Queries, Data Replication, Performance

Evaluation, Economic Benefit
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Résumé

Réplication de données dans les systèmes de gestion de don-

nées à grande échelle

Ces dernières années, la popularité croissante des applications, e.g. les expériences

scientifiques, Internet des objets et les réseaux sociaux, a conduit à la génération de

gros volumes de données. La gestion de telles données qui de plus, sont hétérogenes

et distribuées à grande échelle, constitue un défi important.

Dans les systèmes traditionnels tels que les systèmes distribués et parallèles,

les systèmes pair-à-pair et les systèmes de grille, répondre à des objectifs tels que

l’obtention de performances acceptables tout en garantissant une bonne disponibilité

de données constituent des objectifs majeurs pour l’utilisateur, en particulier lorsque

ces données sont réparties à travers le monde. Dans ce contexte, la réplication

de données, une technique très connue, permet notamment: (i) d’augmenter la

disponibilité de données, (ii) de réduire les coûts d’accès aux données et (iii) d’assurer

une meilleure tolérance aux pannes. Néanmoins, répliquer les données sur tous les

nœuds est une solution non réaliste vu qu’elle génère une consommation importante

de la bande passante en plus de l’espace limité de stockage. Définir des stratégies

de réplication constitue la solution à apporter à ces problématiques.

Les stratégies de réplication de données qui ont été proposées pour les systèmes

traditionnels cités précédemment ont pour objectif l’amélioration des performances
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pour l’utilisateur. Elles sont difficiles à adapter dans les systèmes de cloud. En

effet, le fournisseur de cloud a pour but de générer un profit en plus de répondre

aux exigences des locataires. Satisfaire les attentes de ces locataire en matière de

performances sans sacrifier le profit du fournisseur d’un coté et la gestion élastiques

des ressources avec une tarification suivant le modèle ’pay-as-you-go’ d’un autre

coté, constituent des principes fondamentaux dans les systèmes cloud.

Dans cette thèse, nous proposons une stratégie de réplication de données pour

satisfaire les exigences du locataire, e.g. les performances, tout en garantissant le

profit économique du fournisseur. En se basant sur un modèle de coût, nous esti-

mons le temps de réponse nécessaire pour l’exécution d’une requête distribuée. La

réplication de données n’est envisagée que si le temps de réponse estimé dépasse un

seuil fixé auparavant dans le contrat établi entre le fournisseur et le client. Ensuite,

cette réplication doit être profitable du point de vue économique pour le fournisseur.

Dans ce contexte, nous proposons un modèle économique prenant en compte aussi

bien les dépenses et les revenus du fournisseur lors de l’exécution de cette requête.

Nous proposons une heuristique pour le placement des répliques afin de réduire les

temps d’accès à ces nouvelles répliques. De plus, un ajustement du nombre de

répliques est adopté afin de permettre une gestion élastique des ressources.

Nous validons la stratégie proposée par une évaluation basée sur une simulation.

Nous comparons les performances de notre stratégie à celles d’une autre stratégie

de réplication proposée dans les clouds. L’analyse des résultats obtenus a montré

que les deux stratégies comparées répondent à l’objectif de performances pour le

locataire. Néanmoins, une réplique de données n’est crée, avec notre stratégie, que

si cette réplication est profitable pour le fournisseur.

Mots-clés: Systèmes cloud, requêtes de base de données, réplication de données,

évaluation de performances, profit économique
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Introduction

Abstract

In this chapter, the context of this thesis is explained in terms of the targeted data

management system and the aim of the data replication strategy. Furthermore, the

motivation behind the proposed data replication strategy is described as well as the

conditions that necessitate it. Publications resulted from this thesis alongside the

contributions are also provided in this chapter.
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18 CHAPTER 1. INTRODUCTION

1.1 Context

A noticeable aspect of our lives in the new millennium is that we are now surrounded

with a plethora of interconnected services that generate tremendous amount of data.

In the last decade, growing popularity of social networks, Internet of things and

cloud-based software services immensely increased the amount of data flowing across

the globe. This data is at such a large-scale, even storing it presents significant

challenges. Processing this ever-increasing scale of data, is however a completely

huge challenge in on itself (Hameurlain and Morvan, 2016). Dealing with large-

scale data inevitably strains the capabilities of many traditional systems, including

centralized database management systems (DBMS).

Dealing with the vastness of large-scale data, several large-scale data manage-

ment systems have been introduced over the past decades. Among those, some no-

ticeable examples are parallel and distributed systems, peer-to-peer (P2P) systems,

data grid systems, and more recently cloud systems. Each of these data management

systems have specific properties in their design. These properties may however, be

a double edged sword in data management; while providing benefits in one aspect,

they can also bring challenges in other issues. A good example would be implement-

ing data replication in a distributed environment. It may provide a performance

benefit, but also make it more difficult dealing with data update operations.

Data access performance and availability are other significant issues that must

be addressed by any large-scale data management system. Users expect to have a

certain level of service quality when it comes to accessing their data. Frequent data

access on a global-scale data inevitably poses a significant hurdle for the service

providers. Risk of overloaded computational resources and network links, finite

storage availability are just a few examples that concern service providers. Service
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providers are bound to satisfy a certain, acceptable quality of service in a cost-

effective way to their customers.

In a scenario where the response time of a query is at an undesirably high level for

the tenant, the service provider may use some replication solution, e.g. data and task

replication, to improve the response time of the query. Sometimes, the executing

server may not have enough available CPU, or other necessary resource to process

the query with an acceptable response time. This may be a frequent occurrence

in a multi-tenant data management environments. In this case, the provider might

want to replicate the query to be executed on other servers where there is enough

resources available for execution (Wang et al., 2014). On the other hand, there

may be some cases where the bottleneck for query execution is not due to some

local resource such as the CPU but due to transferring some necessary remote data

residing on a different server. If available bandwidth to that particular remote server

is not enough, the response time guarantee may not be satisfied due to slow data

access. In this case, replicating the associated data closer to the requestor server

may improve the performance problem. While it is possible that these performance

issues can be solved with some form of replication, e.g. data or task replication,

the proposed data replication strategy in this thesis deals data replication aspect of

query execution in the cloud (Tos et al., 2016, 2017b,a).

1.1.1 Data Replication

On ensuring performance, or rather satisfying an agreed upon performance level; ser-

vice providers can benefit from a plethora of choices. Among these, data replication

is a very well known and researched data management technique that has been used

for decades in many systems. Benefits of data replication include increased perfor-
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mance by strategic placement of replicas, improved availability by having multiple

copies of data sets and better fault-tolerance against possible failures of servers.

When tenant queries are submitted to the data management system, depending

on the execution plan, e.g. the number of joins, they may require a number of rela-

tions in order to carry on with the execution. Naturally, in a large-scale environment

where relations are fragmented and distributed geographically in multiple servers,

not all required data may be present on the executing node itself. Considering that a

query is processed on multiple servers according to inter-operator and intra-operator

parallelism, the likelihood of some remote data to be shipped from faraway servers is

a realistic possibility. In cases when the network bandwidth capability to the remote

servers are not abundant, e.g. due to remote data being at a geographically separate

location, a bottleneck that may ultimately lead to a response time dissatisfaction

may occur during query execution process.

In order to ensure the satisfaction of query response time objective, the bottle-

neck data should be identified heuristically to be selected for possible replication

before the query is even started executing. Also, when to trigger the actual repli-

cation event to start is another important decision that must be made for the same

goal. Deciding how many replicas to create and how to retire the unused replicas

must also be dealt with further down the road in the data replication decision pro-

cess. Strategic placement of the newly created replicas plays a key role in reducing

data access latency and improving response time satisfaction. Undoubtedly, all of

these replication decisions should be made from a cost-effective point of view to

ensure the economic benefit of the provider, which is especially important in the

economy-based large-scale systems such as cloud computing.

Dealing with the mentioned issues of data replication, a good data replication
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strategy must be able to decide in a meaningful way; (i) what to replicate to cor-

rectly determine which fragments of relations are in need of replication, (ii) when

to replicate to be able to respond the change in demand of data in a timely manner

to quickly resolve performance problems, (iii) how many replicas to create to avoid

wasting precious resources such as storage to keep the costs down and retire unnec-

essary replicas accordingly, and finally (iv) where to replicate to strategically place

newly created replicas to ensure tenant performance expectations are met and any

possible penalties are avoided. Moreover, all of these decisions should be based on

some criteria that are consistent with the aims of both the tenant and the provider.

1.1.2 Cloud Computing

In cloud computing, physical resources are abstracted and rented to a multitude of

tenants. While the advantages and disadvantages of abstraction of physical resources

is entirely another topic that merits its own research discussion, a well known benefit

of this new way of resource provisioning is the elastic scaling of resources on demand,

without interruption (Hameurlain and Mokadem, 2017). Indeed, Foster et al. (2008)

define cloud computing as directly quoted below.

A large-scale distributed computing paradigm that is driven by economies

of scale, in which a pool of abstracted, virtualized, dynamically-scalable,

managed computing power, storage, platforms, and services are delivered

on demand to external customers over the Internet.

Cloud providers share the abstracted physical resources among their tenants. In

return, tenants pay the rent associated with their share of services acquired from

the cloud provider, according to the pay-as-you-go pricing model. This economic
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relationship between the provider and the tenants is another new aspect of cloud

systems in dealing with data management.

As expected from them, tenants demand the best possible performance for their

applications. However, best performance is a holy grail, which is very difficult and

very costly for the provider to supply. These challenges are further amplified when

best performance is continuously demanded in a dynamically changing environment

such as cloud systems. It is therefore not realistically possible for a provider to

offer the ultimate best performance to the tenants in a cost-effective way (Tos et al.,

2016). As any other economic enterprise, cloud providers have to be in pursuit of

maximizing their profits. While the intricacies of market economies are beyond the

scope of this thesis, it is safe to say that in a competitive market where the cloud

providers are pressured to offer their services at lower prices to attract tenants; only

realistic option is to reduce the costs of these services for the provider. Unfortu-

nately, low cost and best performance are two goals that often contradict with each

other. These conflicting goals are therefore must be regulated in such a way that

is acceptable for both parties in this economic relationship. Instead of best per-

formance, providers offer their tenants a threshold performance level as a service

guarantee.

The economic relationship between the provider and the tenant is clearly defined

in the Service Level Agreement (SLA) (Stantchev and Schröpfer, 2009; Buyya et al.,

2009). SLA is a legally binding contract that regulates and protects the interests

of the parties involved. Among the terms of this contract, Service Level Objectives

(SLO) are particularly interesting for this thesis. SLOs are the agreed upon set

of objectives, e.g. performance, availability etc. that are included in the SLA to

specifically define the quality of the service the provider must supply to the tenants.
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Breach of the SLA terms often result in some consequence for the provider, including

monetary compensation as a penalty (Xiong et al., 2011).

Many applications designed for the cloud environment handle data differently.

Some would prefer storing fast flowing data in an unstructured way, while others may

require a relational model to take advantage of a structured data store that is subject

to a schema. Therefore, data management in cloud systems is not a single, fit-for-all

solution. In that sense, this thesis focuses on a specific data management context,

namely database management systems in the cloud systems. In the considered cloud

environment, database relations are fragmented and distributed to many servers

around the globe. These servers are contained in datacenters that are located in

various geographical regions. Each server, datacenter and region are interlinked

with network connections that vary in both bandwidth capacity and cost. In this

heterogeneous cloud environment, cloud providers process database queries from

multiple tenants, to satisfy a threshold performance level and return a profit at the

same time.

1.2 Motivations

A good way to understand both data replication and new challenges that are brought

to the table by data management in the cloud is to study how data replication is

implemented on traditional systems that precede cloud computing. Traditional sys-

tems such as data grids precede cloud systems in historical context, therefore many

data replication strategies that are proposed for the cloud is somewhat adaptations

of their counterparts for data grid systems in order to address some specific challenge

of the cloud. Consequently, it allows us to better understand how the challenges of
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data replication change in conjunction with the challenges of the cloud and how the

proposed strategies adapted their implementation to address these challenges.

A data management system in the cloud can be elastically scaled on demand,

without interruption. A sensible approach for data replication should take advantage

of this property of the cloud. A common way of replicating data in the traditional

systems, i.e. data grid, is creating as many replicas as possible to attain maximum

resource utilization to provide best performance. In cloud systems, such a data

replication strategy may not be economically beneficial for the provider, since cre-

ation of a large number of replicas can result in a wasteful resource utilization and

in return, reduced profit. As mentioned before, in cloud systems, three major ques-

tions of what to replicate, when to replicate, and where to replicate (Ranganathan

and Foster, 2001) must be answered in such a way to satisfy the performance in an

economically feasible way (Tos et al., 2016).

There is a number of efforts in the literature that studied data replication in the

cloud systems. Many of them focus just on satisfying the availability SLO (Silvestre

et al., 2012; Sun et al., 2012a). In a typical cloud environment, where frequent

queries are placed on a large-scale data, having low response time is crucial for the

tenants. However, performance guarantees, e.g. response time, are often not offered

by cloud providers as a part of the SLA. In order to resolve this issue, there are

several works proposed (Kouki et al., 2011; Sakr and Liu, 2012) in the literature to

include the response time guarantees in the SLA. Dealing with data replication, only

a few studies are particularly interested in improved response time (Wei et al., 2010;

Bai et al., 2013; Janpet and Wen, 2013; Zhang et al., 2014). In addition, even fewer

of those studies (Bonvin et al., 2010a; Ghanbari et al., 2012) are taking economics

of the cloud into account.
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Considering the state of the art on data replication in cloud systems, as men-

tioned, a vast majority of the existing studies focus on criteria other than perfor-

mance, e.g. availability. Among the minority of those that deal with performance,

an often noticed pattern is that the performance is not considered as an objective

but a measured result of data replication as a consequence of having replicas in

the system. A very few number of data replication strategies for cloud systems are

actually focused on satisfying a performance objective. Furthermore, among those

minority, the examples that target a relational database management system that

is operating in the cloud is minuscule. Therefore, only a significantly small number

of existing studies are valuable for the specific set of problems that are mentioned

throughout this thesis study.

This thesis is therefore built on the motivation to address the mentioned problems

and shortcomings of the existing data replication strategies in cloud systems that

deal with database queries. More specifically, the proposed data replication strategy

in this thesis focuses on a novel solution to satisfy performance guarantees to the

tenants, as well as ensuring profitability of the provider while executing queries in

a relational database system situated in the cloud.

In this thesis, a strategy for Achieving query Performance in the cloud via a

cost-Effective data Replication (APER) is proposed to deal with database queries

for OLAP applications. APER focuses on the simultaneous satisfaction of both the

response time objective and provider profit. We consider left-deep, right-deep and

bushy query plans. In a given query plan, before the execution, APER identifies

the pipeline chains that are responsible for a response time dissatisfaction. APER

estimates the response time of each operator in pipeline chains, taking into account

both the inter-operator and intra-operator parallelism. If a required fragment of
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a relation is predicted to cause a bottleneck during the execution, that particular

fragment is considered for replication. The estimated response time with the in-

clusion of this particular replication must be less than a certain SLO response time

threshold. A placement is found for the new replica through a heuristic that reduces

both resource consumption and monetary cost. Furthermore, the number of repli-

cas is dynamically adjusted over time. Carrying out the replication also depends on

another estimation, namely the provider profit estimation. We estimate both the

revenues and expenditures of the provider when executing a query in a multi-tenant

context. If the execution of the query is estimated to be still profitable for the

provider with any possible new replicas, only then the data replication is performed.

This constitutes a challenge that consists of maximizing the provider profit while

minimizing the expenditures as much as possible.

1.3 Contributions

A number of contributions have been made in the duration of this thesis study.

These contributions can be summarized as follows.

(i) A complete data replication strategy that satisfies performance SLO and prof-

itability of the provider simultaneously. The simultaneous satisfaction of two

key criteria, namely response time satisfaction and profitability of provider are

pursued for each query execution. When a query is submitted for execution,

proposed data replication strategy identifies whether data replication is nec-

essary and takes the corresponding action that will result in the desired effect

in terms of performance and profit. If a data replication event is necessary to

take place, how many replicas to create is also another issue dealt by the data
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replication strategy. Where to place the replicas are determined strategically

to satisfy the SLA with most amount of profit.

(ii) A cost model for estimating response time of executing database queries in

cloud computing context. When tenants submit queries to the cloud, they ex-

pect a timely response time that is in accord with the SLA. The cost model

therefore, estimates whether a submitted query can be processed with an ac-

ceptable response time that satisfies the SLA. If the query is estimated to vi-

olate the response time objective, proposed cost model determines the reason

by identifying possible data access bottlenecks in the query plan. Bottleneck

data is then considered for replication. Response time estimation of database

queries has already been a well studied topic in the literature (Lanzelotte et al.,

1994; Özsu and Valduriez, 2011). As a result, the proposed cost model takes

into account the pipelining, inter-operator and intra-operator parallelism and

resource consumption of queries by standing on the shoulders of the existing

studies.

(iii) An economic model of database query execution in the cloud that takes data

replication into account. This economic model estimates the profitability of

the provider by estimating the monetary cost of executing each and every

query. Estimated cost of execution is compared with the estimated revenue

per query in order to predict the profit generated by the provider for any

particular query execution. Naturally, the provider aims to return some profit

while satisfying tenant requirements, therefore the proposed profit estimation

is employed as a decision criterion in the proposed data replication strategy.

(iv) A detailed performance evaluation study to validate the proposed data replica-
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tion strategy. In a simulation environment, the proposed strategy is compared

to another data replication approach. The experiments highlight the difference

between the two strategies in a simulation scenario where frequent queries are

processed in the cloud. Part of this contribution also includes the modifica-

tions necessary to CloudSim (Calheiros et al., 2011) simulation tool, which

does not support data replication out-of-the-box. Extending CloudSim is nec-

essary to accurately simulate a multi-tenant cloud environment that processes

database queries with data replication.

1.4 Publications

During the research period, the studies described in this thesis manuscript have

resulted in preparation of a few publications that demonstrate the contributions.

These publications are shown in Table 1.1.

1.5 Organization of the Thesis

While the publications resulted from this thesis study already describe many of our

contributions, a coherent narrative is crucial to convey the details of the proposed

strategy in a more readable way. As a result, this thesis manuscript is organized as

follows.

Chapter 2 discusses the state of the art on some important concepts that concern

this thesis. A detailed discussion of existing data replication strategies is provided

with respect to various data management systems. This discussion helps to convey

the justification of target data management system that is considered in this thesis,

namely database management systems operating in the cloud.
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Table 1.1: Publications that resulted from the studies described in the thesis.

№ Publication Status Notes

1

Uras Tos, Riad Mokadem, Abdelkader Hameurlain, Tolga
Ayav, and Sebnem Bora. Dynamic replication strategies
in data grid systems: a survey. The Journal of Supercom-
puting, 71(11):4116–4140, 2015. ISSN 0920-8542. doi:
10.1007/s11227-015-1508-7

Published

2

Uras Tos, Riad Mokadem, Abdelkader Hameurlain,
Tolga Ayav, and Sebnem Bora. A performance and
profit oriented data replication strategy for cloud
systems. In Intl IEEE Conference on Cloud and Big
Data Computing (CBDCom), pages 780–787. IEEE,
jul 2016. ISBN 978-1-5090-2771-2. doi: 10.1109/
UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.
0125

Published
Received
best paper
award

3

Uras Tos, Riad Mokadem, Abdelkader Hameurlain, Tolga
Ayav, and Sebnem Bora. Ensuring performance and
provider profit through data replication in cloud systems.
Cluster Computing, (under review), 2017a

Under
review

4

Uras Tos, Riad Mokadem, Abdelkader Hameurlain, Tolga
Ayav, and Sebnem Bora. Achieving query performance
in the cloud via a cost-effective data replication strategy.
International Journal of Web and Grid Services, (under
review), 2017b

Under
review

The main contribution of the thesis is described in Chapter 3. How the proposed

data replication strategy decides which database relations to replicate, when to

trigger the replication event, how many replicas to create during each replication

and where to place the newly created replicas with respect to the cost model and the

economic model are discussed here. Also, retirement of unnecessary replicas are also

described in this chapter. Furthermore, this chapter introduces a cost model and

an economic model of database query processing in the cloud. The cost model of

query processing focuses especially on the response time estimation of the database
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queries, with respect to inter-operator and intra-operator parallelism. Additionally,

how the proposed response time estimation takes into account the consumption of

CPU, I/O and network resources by each operator in the query execution plan is

discussed. The economic model deals with estimating the monetary cost of each

query execution. Moreover, the economic impact of the replication decisions is also

dealt by this model. How the provider profit is estimated with respect to monetary

resource cost of each query execution is also covered here.

Performance evaluation study of the proposed data replication strategy is pre-

sented in Chapter 4. In a simulation environment, the proposed strategy is pit

against another strategy in a simulation scenario to demonstrate how the proposed

data replication strategy satisfies performance guarantees for the tenant and prof-

itability of the provider simultaneously.

Chapter 5 concludes the thesis manuscript with an overall discussion of some

advantages and shortcomings of the proposed data replication strategy, the difficul-

ties encountered during the thesis studies and overall concluding remarks on doing

research in this research area. Furthermore, a discussion of some possible future

directions in this research area is also provided in this chapter.



Chapter 2

State of the Art

Abstract

In this chapter, a detailed state of the art on data replication in various data man-

agement systems is provided. The existing data replication strategies in several

large-scale data management systems are analyzed with respect to their key proper-

ties and how they take advantage of the data management system they are targeting.

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Data Replication in Data Grid Systems . . . . . . . . . . . . . . 34

2.2.1 Existing Classifications . . . . . . . . . . . . . . . . . . . 35

2.2.2 Proposed Classification . . . . . . . . . . . . . . . . . . . 38

2.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Data Replication in Cloud Systems . . . . . . . . . . . . . . . . 54

2.3.1 Data Replication to Satisfy Objectives Other Than Per-

formance . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

31



32 CHAPTER 2. STATE OF THE ART

2.3.2 Data Replication for Performance Objective without Eco-

nomic Consideration . . . . . . . . . . . . . . . . . . . . 60

2.3.3 Data Replication for Performance Objective with Eco-

nomic Consideration . . . . . . . . . . . . . . . . . . . . 63

2.3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.1 Introduction

Data replication is a very well-known data management technique that has been

commonly adopted by many traditional systems, including (i) database management

systems (DBMS) (Kemme et al., 2010), (ii) parallel and distributed systems (Özsu

and Valduriez, 2011), (iii) mobile systems (Guerrero-Contreras et al., 2015) and (iv)

other large-scale systems including P2P (Spaho et al., 2015) and data grid systems

(Tos et al., 2015).

In the large-scale data management systems where the data is distributed geo-

graphically, i.e. at the scale of wide area networks (Goel and Buyya, 2006). Frequent

access to data would strain network links, overload remote data stores, and overall

degrade computational performance. On the other hand, placing local copies of data

sets at each node is costly and simply not realistic. As a result, placement of data

plays an important role in all large-scale data management systems.

Dealing with data placement problem, data replication is interested in strate-

gically placing copies of data in order to increase availability, access performance,

reliability, and fault-tolerance, as well as to reduce bandwidth usage, and job com-

pletion times. Many replication strategies have been proposed (Ranganathan and
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Foster, 2001; Tang et al., 2005; Park et al., 2004; Chang and Chang, 2008) to achieve

such goals.

Every data replication strategy should be able to address several problems (Ran-

ganathan and Foster, 2001). (i) What data should be replicated? It is generally not

feasible to replicate each data set, therefore establishing a meaningful criteria on

choosing what to replicate is important. (ii) When should the replication take place?

Establishing a good trade-off on when to replicate is crucial as replicating too early

might be wasteful on resources, while replicating too late may not yield the full

benefits of replication. (iii) How many replicas should be created? An optimal, or

at least a near-optimal number of replicas should ideally be present in the system

to balance the benefits and costs of the replication. While having too many repli-

cas may be wasteful, having too little can be equally undesirable as it may not be

enough to satisfy a desired service quality. (iv) Where should the replicas be placed?

Generally, placing replicas closer to the clients with the most access requests may

improve overall performance during frequent data accesses.

Achieving an optimal replica configuration across an entire data management

system is an NP-hard problem (Tang and Xu, 2005; Du et al., 2011). Albeit not

providing exactly an optimal solution, existing data replication strategies very widely

use heuristics to achieve a desired replica configuration throughout the target large-

scale environments with at least a near-optimal solution. These data replication

strategies set some trade-offs and generally aim to excel in at least one aspect of

service quality with minimal undesirable consequence.

In the following subsections, we study the existing data replication strategies

in some large-scale data management systems that are relevant to the work put

forward in this thesis. Even though the main contribution of this thesis is in the
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cloud systems context, the state of the art on data replication also contains other

data management systems in order to better understand how data replication strate-

gies are evolved with respect to the properties of each individual data management

environment.

2.2 Data Replication in Data Grid Systems

The notion of grid computing emerged in 1990s as a way to establish a distributed

processing infrastructure to satisfy information handling needs of institutions that

perform advanced science experiments (Foster, 2001). These institutions contribute

computational resources to the grid as virtual organizations, which in turn share

these resources in a federated manner.

Data grid is a specialized grid infrastructure that provides a scalable data man-

agement solution for science experiments that generate a large amount of data (Cher-

venak et al., 2000). It provides a globally-spanned heterogeneous environment to

research institutions. Data grid is independent of the research areas of these insti-

tutions as the many diverse fields take advantage of the data grid including physics

(Segal, 2000; Takefusa et al., 2003; Hoschek et al., 2000), astronomy (Deelman et al.,

2002), biology (Maltsev et al., 2006), and climate science (Chervenak et al., 2003).

A common emergence among these experiments is, all of them generate immense

amounts of data that is often in the petabytes region (Hoschek et al., 2000; Tatebe

et al., 2002).

Often times, data sets are generated by some experiment performed at an in-

stitution and the resulting data sets are processed by other interested institutions

which are located in various parts of the world. Processing these data sets require
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data to be shipped from their origin to the requestors. Frequent data access, com-

bined with precious and limited bandwidth availability potentially cause disastrous

data transfer times. Therefore, data replication is an inevitable necessity in data

grid systems.

2.2.1 Existing Classifications

There has been a vast number of efforts in the literature on data replication in data

grid systems. Each data replication strategy focus on achieving a clearly defined ob-

jective, e.g. availability and performance. In this sense, it is possible to classify these

replication strategies with respect to some clearly defined criteria existing in their

design. Some of these classifications are based on static vs. dynamic classification

(Chervenak et al., 2002; Cibej et al., 2005), while some others deal with centralized

vs. decentralized replication strategies (Ma et al., 2013; Dogan, 2009; Amjad et al.,

2012). Push-based vs. pull-based classification (Nicholson et al., 2008; Chervenak

et al., 2008; Dogan, 2009; Steen and Pierre, 2010) also exists in the literature, as

well as a classification based on the objective function (Mokadem and Hameurlain,

2015).

Arguably the most common classification scheme is static vs. dynamic replica-

tion. In static replication, all replication decisions are made before the system is

operational and replica configuration is not changed during operation (Chervenak

et al., 2002; Cibej et al., 2005; Loukopoulos and Ahmad, 2004; Fu et al., 2013).

On the other hand, in dynamic replication, what, when, and where to replicate are

decided as a response to the changing trends of data grid (Park et al., 2004; Tang

et al., 2005; Chang and Chang, 2008; Nicholson et al., 2008). In a non-changing

grid environment, where nodes do not join or leave the grid and file access patterns
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are relatively constant, static replication might be the better alternative. Compared

to dynamic replication, static replication do not have the overhead caused by repli-

cation decisions and management. On the other hand, when replicas need to be

periodically reconfigured according to changing access patterns, it causes significant

administrative overhead and affects scalability and optimal resource use of the sys-

tem. In a dynamic environment where grid nodes are free to join or leave, and access

patterns change over time, dynamic replication excels static replication.

Centralized vs. decentralized replication depends on what entity will control the

replication decision process (Ma et al., 2013; Dogan, 2009; Amjad et al., 2012).

Centralized replication strategies contain a central authority to control all aspects

of data replication. All decision metrics are either collected by or propagated to

this central authority. Replication decisions are made by this point of control and

all the other nodes report to it. In contrast, decentralized approach requires no

central control mechanism to exist in the system. Nodes themselves decide on how

replication will occur. Each approach has its advantages and drawbacks. Centralized

replication is easier to implement and generally more efficient, as a single entity is

responsible for all the decisions and has knowledge about every aspect of the data

grid. On the other hand, the central authority is also a point of failure, thus is

not ideal for reliability and fault-tolerance. Decentralized replication is good for

reliability as there is no single point of failure in the system and the system can still

behave predictably even a number of nodes are lost. However, having no central

control and nodes acting on incomplete information about the state of the system

may yield non-optimal results, e.g. excessive replication (Ranganathan et al., 2002).

On replication of any particular data, there are two actors involved. Former is

the server that hosts the data, and the latter is the requestor that pulls the data to
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its local storage. Push vs. pull based classification is focusing on the fact that which

of these two actors trigger the replication event (Nicholson et al., 2008; Chervenak

et al., 2008; Dogan, 2009; Steen and Pierre, 2010). In push based replication, repli-

cation event is triggered by the originator of data, as the server pushes data sets to

clients. Servers receive requests from a number of clients, thus they require enough

information about the state of the system to be able to trigger replication. There-

fore, push based replication is often proactive. In pull based replication, replication

event is triggered by the clients. Pull based replication can be regarded as reactive,

since replication is realized on-demand. Client-side caching is also regarded as pull

replication due to the fact that in this form of caching, clients decide to temporarily

store data in their local storage (Steen and Pierre, 2010).

Considering the fact that data replication aims to minimize or maximize some

objective, it is possible to make a classification with regard to the definition of this

objective function (Mokadem and Hameurlain, 2015). One popular approach is to

improve data locality (Ranganathan and Foster, 2001; Tang et al., 2005). In this

case, the aim is to place replicas as close to the clients as possible. Some strategies

take this aim further by heuristically identifying popular data sets and increase

their locality (Shorfuzzaman et al., 2009). Cost based objective functions enable

replication decisions to take a number of parameters into account (Rahman et al.,

2005; Andronikou et al., 2012; Mansouri and Dastghaibyfard, 2013). In these works,

replication decision is generally made according to the output of a mathematical

model that take into account collective file access statistics, bandwidth availability,

replica sizes, etc. Market-like mechanisms also exist in some works (Bell et al., 2003;

Goel and Buyya, 2006). In these efforts, data is regarded as tradable goods. During

a replication event, clients tend to buy data from remote servers that offer the lowest
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price while remote servers try to sell their data to return some profit.

2.2.2 Proposed Classification

In the following subsections, we study the state of the art on data replication in

data grid systems with respect to a classification based on data grid architecture

This novel classification is the main contribution of one the publications (Tos et al.,

2015) resulted from this thesis study.

2.2.2.1 Data Grids with Multi-tier Architecture

Multi-tier architectures follow the data grid model of GriPhyN project (Ranganathan

and Foster, 2001). It is hierarchical in nature, and it has a well-defined, strict

topology. On the other hand, due to this strict organizational structure, multi-tier

architectures are not very flexible to allow arbitrary addition of removal of nodes.

Multi-tier data grid is organized in four tiers. Tier 0 denotes the source, e.g. CERN,

where the data is generated and master copies are stored. Tier 1 represents national

centers, Tier 2 shows the regional centers, Tier 3 consists of work groups, and Tier

4, contains desktop computers as depicted in Figure 2.1. In this model, generally,

the storage capacity increases from bottom to the upper levels of the hierarchy.

Taking advantage of the hierarchical architecture, Ranganathan and Foster (2001)

paved the way by proposing six dynamic replication strategies for multi-tier data

grid. These strategies are, No Replication or Caching, Best Client, Cascading Repli-

cation, Plain Caching, Caching plus Cascading Replication, and Fast Spread. No

Replication or Caching is implemented as a base case for comparing other strategies

to a no-replication scenario. In Best Client strategy, access history records are kept

for each file on the grid. When a certain threshold is reached, that file is replicated
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Figure 2.1: Multi-tier data grid architecture.

only on the client that generates most requests. Cascading Replication introduces

a tiered replication strategy, in which, when a threshold for a file is exceeded at the

root node, a replica is placed at the level on the path towards the best client, progres-

sively. In Plain Caching, the client requests a file and stores it locally. Caching plus

Cascading Replication combines Cascading Replication and Plain Caching. Fast

Spread is the final strategy in which, upon client file requests, a replica of the file

is placed on each tier on the path to the client. Popularity and file age are used

as parameters to select files for the replica replacement approach. In simulations

with three different access patterns, they show that Best Client strategy performs

worst. Fast Spread works better with random data access patterns and Cascading

Replication performs better when locality exists in data access patterns.

Some other data replication strategies also deal with data popularity according

to the access histories of files (Cui et al., 2015). Simple Bottom-Up (SBU) and

Aggregate Bottom-Up (ABU) strategies by Tang et al. (2005) are good examples of

this idea. These strategies identify what files to replicate by analyzing file access

history. When an access threshold is exceeded, SBU places replicas close to the

nodes that request files with higher frequencies. ABU, on the other hand, calculates
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the aggregate access records for each sibling of a node and passes this information to

higher tiers until the root node is reached. At each level, replication decision is made

when aggregate access values pass a predefined threshold. Both strategies employ

Least Recently Used (LRU) (Arlitt et al., 2000) replica replacement approach. In

the performance evaluation, ABU yields the best average response time and average

bandwidth cost among studied strategies.

Also dealing with access popularity of files, Shorfuzzaman et al. (2009) pro-

pose two dynamic replication strategies for multi-tier data grid, Popularity Based

Replica Placement (PBRP), and its adaptive counterpart, Adaptive-PBRP (AP-

BRP). PBRP aims to balance storage utilization and access latency trade-off by

replicating files based on file popularity. The replication strategy is run periodically

in a way that access records are aggregated bottom-up and replica placement is done

in a top-down manner. APBRP improves PBRP by introducing an adaptive access

rate threshold. In simulations, APBRP shows improvement over PBRP while both

strategies perform better than Best Client, Cascading, Fast Spread, and ABU in

terms of job execution time, average bandwidth use, and storage use.

In addition to file popularity based on access frequencies, some data replication

strategies also deal with spatial locality among files. A good example is File Reunion

(FIRE) by Abdurrab and Xie (2010) strategy. FIRE assumes that there is a strong

correlation between a group of jobs and a set of files. Based on this assumption,

FIRE aims to reunite the file set onto the servers by means of replication. Replication

is performed when a file is not locally available, and there is enough storage space

to store it. If there is not enough storage space, a file with a lower group correlation

degree is removed before replicating the new file. In a simulation scenario, FIRE

performed better than Least Frequently Used (LFU) (Arlitt et al., 2000) and LRU
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replication strategies.

On improving spatial locality of files, Khanli et al. (2011) proposed Predictive

Hierarchical Fast Spread (PHFS) as an improvement over Fast Spread by Ran-

ganathan and Foster (2001). PHFS works in three stages. In monitoring stage,

file access records from all clients are collected in a log file. In analyzing stage,

data mining techniques are used to discover the relationships between files. For a

file A, any file B with a relationship greater than a threshold is considered in the

predictive working set (PWS) of A. In the final stage replication configuration is

applied according to the calculated PWSs. They left performance evaluation for a

future study but showed on an example that PHFS improved access latency over

Fast Spread.

2.2.2.2 Data Grids with Bandwidth Hierarchy Consideration

Data grids usually comprises participation from a number of institutions. These

institutions although not necessarily, but usually located in various parts of the

world. This geographical diversity is reflected on how a data grid architecture is

substantiated in terms of network links (Figure 2.2). At the local network level, the

institutions may enjoy the benefits of high-speed network links. However, over large

geographical distances the Internet infrastructure is generally used. The problem

with transferring large-scale data over Internet is potentially high delays and transfer

times due to the lack of abundance in bandwidth. Some data replication strategies

take advantage of this heterogeneity in network bandwidth capability.

One of the earliest studies to consider bandwidth hierarchy is the Bandwidth

Hierarchy Replication (BHR) by Park et al. (2004). In their approach, they present

that bandwidth between regions, e.g. countries, are narrower compared to bandwidth
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Figure 2.2: A hierarchical data grid architecture based on network-level locality.

available inside a region. BHR replicates popular files as many times as possible

within a region, where intra-region bandwidth is abundant. In simulations, BHR

performs better than delete LRU and delete oldest replication when narrow inter-

region bandwidth or low node storage space exists. However, as the inter-region

bandwidth or available storage space of the nodes increase, BHR performs similarly

to the traditional strategies.

An improved implementation of BHR was proposed by Sashi and Thanamani

(2011) as Modified BHR algorithm. In their strategy, the data is generated at the

master site and replicated to region headers before any jobs are scheduled on the

grid. They assume that the files accessed by a node, will also be accessed by nearby

nodes and popular files will be accessed more frequently. Replicas are only placed

in the region header and the node that makes the most requests. The access records

are kept in the region header and least frequently used replicas are chosen as the

deletion strategy. Modified BHR algorithm is compared with no replication, LFU,
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LRU and BHR in a simulation study and the results show improved mean job time

than to other strategies.

While BHR and its variants dealt with a two level bandwidth hierarchy, some

other strategies considered a three level network hierarchy to better represent a real-

istic network topology. Horri et al. (2008) presented 3-Level Hierarchical Algorithm

(3LHA) for this purpose. In this work, the first level consists of regions, i.e. hav-

ing low bandwidth availability. Levels two and three represent local area networks

(LAN) and clients in the LANs, respectively. When a client accesses a file, if it has

enough storage, the file is replicated. However, if files needed to be deleted before

the replication, first, the local files that also already exist on the LAN are chosen

for deletion. Then, the local files that already exist in the region are considered for

deletion, and if there is still not enough space available, other local files are deleted.

They compared their strategy with BHR and LRU and showed that the proposed

strategy performs better in terms of mean job time.

Mansouri and Dastghaibyfard (2012) extended 3LHA and proposed Dynamic

Hierarchical Replication (DHR) strategy. They emphasize that 3LHA places replicas

in all of the requestor sites. On the other hand, DHR creates a per-region ordered

list of sites with respect to the number of accesses to a file. The site that is at

the top of the order is chosen to place the new replica. By placing replicas at best

sites, DHR aims to lower storage cost and mean job execution time. They compare

the effectiveness of DHR against no replication, LFU, LRU, BHR, and 3LHA. The

results show that DHR shows better job execution times compared to other studied

strategies, especially when grid sites have smaller storage space. In another paper,

Mansouri and Dastghaibyfard (2013) also added economic cost model calculation

to DHR, and presented Enhanced Dynamic Hierarchical Replication (EDHR). By
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predicting future economic value of files, they made better assessment of which

replicas will not be beneficial and get deleted, and which files will be beneficial

and get replicated. Simulations indicate that EDHR yields even better mean job

times than DHR. Another variant of 3LHA is the Modified Dynamic Hierarchical

Replication Algorithm (MDHRA), which is another extension of DHR strategy by

Mansouri et al. (2013). In MDHRA, replica replacement decision mechanism is

altered to take last request time, number of accesses, and size of the replica into

account. They note that the new approach improve the availability of valuable

replicas. Simulations show that, compared to DHR and other studied strategies,

MDHRA performs better in terms of mean job completion time and effective network

usage. However, performance evaluation does not include EDHR.

Instead of periodically reacting the changing trends in the system, Pre-fetching

and Prediction based Replication Algorithm (PPRA) (Beigrezaei et al., 2016). PPRA

uses predictive statistical methods to discover the relationships between files. There-

fore, when a file is requested by a client, PPRA pre-fetches any related files and

replicates them if necessary. Replica managers continuously collect and update file

access logs to extract the patterns in file requests.

2.2.2.3 Other Hierarchical Data Grid Architectures

Data replication strategies of this type are still designed for a hierarchical data grid

architecture. However, they do not strictly target the four level multi-tier data grid

(Ranganathan and Foster, 2001) or they do not necessarily consider the bandwidth

hierarchy. Still, they assume the data is produced at the origin of the hierarchy

and processed by clients at the lower levels. In most cases, there are middle level

intermediate nodes in the hierarchy that are used for storing data.
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Improving data locality through replicating popular files is a common focus for

many studies. An access-weight based dynamic replication strategy is proposed by

Chang and Chang (2008). Their work, Latest Access Largest Weight (LALW), de-

fines a strategy for measuring popularity of files on the grid, calculating the required

number of replicas, and determining sites for replica placement. Recently accessed

files have larger weights and, the replica placement is based on weighted access fre-

quencies. LALW shows similar total job execution times compared to LFU while

consuming less storage space and having more effective bandwidth usage.

Another strategy called Popular File Replicate First (PFRF) by Lee et al. (2012)

employs a threshold-based popularity measure to replicate the top 20% popular files

to every grid site. Files are replicated to destination sites from the closest site

that holds the required files. In a simulation scenario using five access patterns,

PFRF shows improved performance on average job turnaround time, average data

availability, and bandwidth cost ratio metrics.

Dynamic Optimal Replication Strategy (DORS) by Zhao et al. (2010) is yet an-

other popularity-based replication strategy. A file is replicated when the number of

replicas of that particular file is less than a dynamic threshold. Replicas are valued

according to their values, which depend on access frequency and access cost of the

replicas. DORS performs better than LFU and LRU in terms of mean job execution

time and effective network use metrics.

Other works focus on correlation between files or file fragments. This way, it

is possible to predict, to some degree, which files are going to be accessed after

certain files. Saadat and Rahmani (2012) propose Pre-fetching Based Dynamic Data

Replication Algorithm (PDDRA) with the assumption that members of a virtual

organization (VO) have similar interests in files. PDDRA predicts the future accesses
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of files and pre-replicates those. When a file is requested, PDDRA scans the logs and

determines which files follow that file, and which of the follower files has the greatest

number of accesses. PDDRA shows better performance than other strategies in

terms of mean job execution time and effective network usage under all simulated

access patterns.

Combination of the popularity concept with correlation among file accesses is also

a visited issue in the literature. Replication Strategy based on Correlated Patterns

(RSCP) (Hamrouni et al., 2015) and Replication Strategy based on Maximal Frequent

Correlated Patterns mining (RSMFCP) (Qin et al., 2017) use data mining techniques

to discover closely related files. Once these correlated file groups are identified, their

replication are always carried out in a group. If there is not enough storage on the

target node, older replicas are retired in order to make space.

In a similar approach but this time for a different goal, Branch Replication

Scheme (BRS) (Pérez et al., 2010) takes advantage of the relationship between dis-

joint sub-replicas of a single file, whose replicas are placed on different nodes. With

this approach, however, BRS aims to create high levels of fault-tolerance without

increasing the storage use.

Improved data locality of popular files is not the only aim of replication, as

evidenced by Meroufel and Belalem (2013). They propose a replication strategy

called Placement Dynamic (PD) that determines a minimal the number of replicas

to ensure a certain level of availability without degrading performance. In PD

strategy, placement of replicas and failures in the system are taken into account.

If a failure suspicion is observed, data is moved to other nodes in the system to

maintain availability. Authors compared PD to a random replication approach in

simulations performed with FTSim. Results show that PD demonstrates better
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recovery times and satisfies availability compared to random replication.

2.2.2.4 Data Grids with Peer-to-peer Architecture

In peer-to-peer (P2P) data grid architectures, there is no central authority to make

and enforce replication decisions. Grid nodes themselves collect the measurements

of metrics used in these decisions. They act in an autonomous way and normally

possess enough functionality to act as both servers and clients at the same time.

This decentralized grid architecture shown in Figure 2.3 allows high volatility, as

nodes can connect to any part of the grid and leave without notice.

Node

Figure 2.3: Peer-to-peer data grid architecture.

In an early effort by Ranganathan et al. (2002), a model-driven dynamic repli-

cation strategy keeps a minimum required number of replicas in P2P data grid to

satisfy a desired availability level. Their model takes node stability, data transfer

time between nodes, storage cost of files into account. While their system expectedly

outperforms a static replication approach they highlight the fact that independent

acting of nodes on incomplete information sometimes lead to unnecessary replica-

tion.

A common approach in the P2P grid where there is no apparent hierarchy among
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the nodes is to rely on network link connectivity degree to decide on the minimization

of data transfer times. Chettaoui and Charrada (2014) capitalize on this idea with

DPRSKP, Decentralized Periodic Replication Strategy based on Knapsack Problem.

DPRSKP selects what files to replicate by creating a prioritized list of the popularity

and availability of each file. Replicas of popular files are then placed on nodes that

are stable and having good bandwidth to the requestor nodes.

Also dealing with network distances when making replication decisions, Abdul-

lah et al. (2008) propose two dynamic replication strategies, Path and Requestor

Node Placement Strategy, and N-hop Distance Node Placement Strategy. Path and

Requestor Node Placement Strategy replicates files on all nodes on the path to the

requestor node, including the requestor itself. In N-hop Distance Node Placement

Strategy, replicas are placed on all neighbors of the provider node with a distance

of N. These two strategies increase availability and decrease response time at the

expense of using more bandwidth.

Another data replication strategy by Challal and Bouabana-Tebibel (2010) max-

imizes the distance between identical replicas and minimizes the distance between

non-identical replicas. They increase availability and ensure that each node has

replicas of a different file in its vicinity. Another interesting aspect of their strategy

is they supply the data grid with a strategic initial placement of replicas before the

jobs are started.

Focusing on network topology is not the only consideration of the replication

strategies for P2P data grids. Bell et al. (2003) present an economy-based data

replication strategy that considers the data grid as a marketplace. Files represent

tradable goods on this market. Computing elements purchase files and aim to mini-

mize their purchasing cost. Similarly, storage elements try to maximize their profits
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and make investments based on file access predictions to increase revenue. This

strategy reduces total job execution times in sequential file access, however LRU

performs better in some specific access patterns.

2.2.2.5 Data Grids with Hybrid Architecture

Hybrid data grid architectures generally combine at least two other architectures

with different properties. For example, a replication strategy can be aimed at a

sibling tree hybrid architecture, which combines P2P-like inter-sibling communica-

tion with hierarchical parenthood relationships as depicted in Figure 2.4. This is

a very specific type of data grid architecture that is not considered by many data

replication strategies.

...

Node

... ... ...

Figure 2.4: An example hybrid data grid architecture (sibling tree).

An example data replication strategy for this category is presented by Lame-

hamedi et al. (2002), a hybrid replication strategy that combines the hierarchical

architecture with P2P features. They implemented a cost model and based the

replication decisions on how the gains of the replication measure against the costs.

A runtime component constantly monitors the grid to collect important parameters,

i.e. replica size, and network status. These information used in the calculation of
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the replication costs. They noted that average response time is improved as replicas

are placed closer to clients.

Two-Way Replication (TWR) by Rasool et al. (2009) combines a multi-tier ar-

chitecture with P2P-like features. In the target architecture, each node (except

at the leaf level) is connected to its siblings as well being connected to its parent.

Replication decision is handled by a central authority called Grid Replication Sched-

uler (GRS). GRS targets the files that have higher-than-average access frequency

and replicates them at the parent of the client that generate the most requests. In

terms of response time, TWR performs similarly to Fast Spread while consuming

less resources.

2.2.2.6 Data Grids with General Graph Architecture

In general graphs, nodes are freely connected (Figure 2.5) without a particular topo-

logical enforcement for hierarchy. From a scalability point of view, these architec-

tures are at an advantage because there is no strict limitation on the organization

of the nodes. Data replication strategies that are targeting the scale-free, social

network based data grid architectures and other general strategies that do not focus

on one particular architecture are classified in this subsection.

In general graph data grids, nodes are interconnected with varying degrees of

connectivity. This impacts the inter-node data transfer capabilities of the nodes as

some nodes having easier access to different parts of the grid. Dynamic Multi-replicas

Creation Algorithm (DMRC) (Chen et al., 2010) takes advantage of this scale-free

grid architecture. DMRC measures the degree of distribution of nodes and place

replicas on nodes with higher degrees. It also uses a cost model to calculate costs of

placing replicas on candidate nodes.
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Node

Figure 2.5: An example data grid architecture with scale-free topology.

Benefiting from replica placement with respect to network distance has also been

studied by Rahman et al. (2005) in a multi-objective replication strategy. They use

p-median and p-center models to select nodes for placing replicas. The p-median

model finds p replica placement nodes to optimize the request-weighted average

response time. The p-center model selects p replication nodes to minimize maximum

response time. Their strategy aims to minimize p-median model by restricting the

increase in the p-center objective. By doing this, they minimize average response

time without having a requestor too far from a replication node.

Other strategies deal with improved service quality by means of data replication.

In this respect, Andronikou et al. (2012) present a data replication strategy that

focuses on a new metric called measuring data importance. The importance of data

is defined as maximizing profits by satisfying quality of service requirements of the

system. They proposed a greedy algorithm and an adaptable heuristic algorithm

to make replication decisions. They compared these algorithms to show that the

heuristic approach outperformed the greedy algorithm in terms of execution speed.
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Minimize Data Missing Rate (MinDmr) (Lei et al., 2008) is another data repli-

cation strategy that improves service quality by satisfying availability. Two data

availability metrics, System File Missing Rate (SFMR) and System Bytes Missing

Rate (SBMR) are proposed to represent the ratio of the missing number of files and

amount of data to total files, respectively. All files have weights according to their

availability, number of predicted future accesses, number of copies, and size. The

files with lower weights are called cold data and files with higher weights are called

hot data. During replica replacement, cold data is deleted first, and hot data has

the greater probability of replication.

Not all replication strategies propose new metrics to improve quality of service.

As some earlier strategies Enhanced Fast Spread (EFS) (Bsoul et al., 2011) extends

the existing Fast Spread (Ranganathan and Foster, 2001) replication strategy to

improve data locality. In EFS, a replica is created only under two conditions. (i)

When enough storage is available, or (ii) replica to be created is more important

than the replicas it is replacing. The replica replacement decision is based on a

dynamic threshold that takes the number of requests, frequency of requests, size of

the replica, and last request time into account.

2.2.3 Analysis

Studying data replication strategies in data grid systems revealed that these strate-

gies mainly target and take advantage of some grid architecture. Among these,

more relaxed architectures offer easier data access, with multiple network routes to

remote sites. In applications where frequent remote requests are a necessity, these

architectures are found to be more suitable than other architectures with stricter

topologies. It is safe to say that in the architectures where nodes are connected in a
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less restrictive manner, the response time is decreased, regardless of the replication

strategy used (Tos et al., 2015) compared to more sparsely interconnected data grid

architectures.

Access patterns of files are shaped by user requests (Dogan, 2009; Sashi and

Thanamani, 2011). In data grids, stored files are read by clients that process them.

Some data processing tasks may require a number of files contained in a data set.

In those cases, a data set contains a number of files that have some correlation

between their access frequencies. Furthermore, a newly added file to the grid may

gain a popularity, or contrarily a popular file of today may not be popular in the

future. There are a number of different access patterns used in the literature, in-

cluding random access patterns that are generated from statistical distributions,

e.g. Gaussian and Zipf, and sequential access pattern models. While some studies

use three (Ranganathan and Foster, 2001) or even five (Shorfuzzaman et al., 2009;

Saadat and Rahmani, 2012; Lee et al., 2012) different access patterns for evaluating

performance, others argue for using a more realistic access pattern (Adamic and

Huberman, 2002), e.g. Zipf-based. Nevertheless, a sensible model of data access

patterns is crucial for realistic evaluation of performance.

Many data replication strategies aim to increase availability. Performance en-

hancement is often times not directly aimed but still obtained as a consequence of

having multiple replicas of files. Multiple replicas allows requestor nodes to have

multiple access paths to files, and almost always guarantees lower data transfer

times. As having these benefits are tempting, there are replication strategies that

always replicate (Ranganathan and Foster, 2001; Dogan, 2009), or create as many

replicas as possible (Park et al., 2004; Sashi and Thanamani, 2011). Data grids

are purpose-built and its resources are shared among institutions in a federated way
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(Foster et al., 2008). Maximizing resource utilization for maximizing desired benefits

is a common theme among these data replication strategies.

Grid resources, while being distributed among the institutions in a federated

way, are still not free. A drawback of aiming maximized resource utilization in data

replication is the increased resource cost incurred on the data grid infrastructure.

Some strategies deal with resources being finite and limited, e.g. BHR (Park et al.,

2004), most of them do it in terms of resource abundance but not the monetary

aspect. As a result, economic impact of the replication is not a frequently visited

issue by many proposed data replication strategies in data grid systems. An example

case is when a traditional strategy aims to increase availability by filling all of the

available storage. Considering the cost of increased storage capacity, it is apparent

that replication strategies that create as many replicas as possible will create an

economic burden on both the consumer and the service provider.

2.3 Data Replication in Cloud Systems

In the last decade, cloud computing has established itself as a popular computing

paradigm. Cloud providers offer seemingly infinite amount of resources to meet

ever-increasing storage and computational needs of the tenants (Foster et al., 2008)

by benefiting from filling datacenters with commodity hardware. Elastic scaling of

abstracted resources (Kouki and Ledoux, 2013) also opened the doors for the cloud

providers to offer an economy-based service model (Suleiman et al., 2011). These

seemingly infinite resources are rented to tenants as a utility with pay-as-you-go

pricing model (Philip Chen and Zhang, 2014).

In a typical cloud environment, where frequent access requests are placed on a
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large-scale data, having low response time and high availability is crucial for the

tenants. As in many systems, a number of data replication strategies have been

proposed (Alami Milani and Jafari Navimipour, 2016; Tabet et al., 2017) to improve

the service quality through SLA-awareness in the cloud systems.

Part of the proposed SLA-aware data replication strategies are tenant-centric

(Zhao et al., 2014). Some propose replication strategies that focus on minimizing

consumption of a certain cloud resource (Vulimiri et al., 2015), e.g. bandwidth, while

others deal with replication of databases to satisfy the SLA without considering

monetary impact of the replication decisions (Sousa and Machado, 2012).

Performance guarantees, e.g. response time, are often not offered to the tenants

by cloud providers as a part of the SLA. Many of the data replication strategies

in the cloud focus just on satisfying the availability SLO (Silvestre et al., 2012;

Sun et al., 2012a). The lack of performance guarantees in SLAs is also true for the

commercial clouds offered by Amazon1, Google2, and Microsoft3. In order to address

this shortcoming, there are several works proposed (Kouki et al., 2011; Sakr and Liu,

2012) in the literature to propose mechanisms to include response time guarantees in

the SLA. Dealing with data replication, only a few studies are particularly interested

in improved response time (Wei et al., 2010; Bai et al., 2013; Janpet and Wen, 2013;

Zhang et al., 2014). Furthermore, even fewer of those studies (Bonvin et al., 2010a;

Ghanbari et al., 2012) are taking economic impact of data replication into account.

Data replication is an integral part of the cloud and many distributed data

management systems on the cloud such as Google File System (GFS) and Hadoop

File System (HDFS) already implement some form of replication. As an example,

1http://aws.amazon.com/s3/sla/
2https://cloud.google.com/storage/sla
3http://azure.microsoft.com/en-us/support/legal/sla/
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HDFS creates triple replicas in a rack-aware fashion to enhance both the performance

and availability (Lee et al., 2015). However, as the scale of the cloud systems enlarge

as the number of datacenters and their geographical disparities increase to the scale

of Internet, it is necessary for data replication strategies to address this trend.

The following subsections classify the existing data replication strategies in cloud

systems according to their objective and whether they consider the monetary impact

of data replication in the replication decision process. Since one of the contributions

of this thesis is on the performance satisfaction through data replication, the classifi-

cation is deliberately based on the satisfaction performance objective or satisfaction

of objectives other than performance.

Of course, boundaries of classifying data replication strategies in the cloud may

sometimes become not clearly apparent due to a certain amount of overlap in the

classification criteria. For example, many strategies that focus on increased avail-

ability also observe improved performance even though performance may not be an

objective in such strategies. This performance benefit occurs as a consequence of

having multiple replicas of data sets. As mentioned earlier, a significant portion of

data replication strategies in the cloud ignore the economic impact of data replica-

tion. Following classification is done in such a way that highlights this phenomenon

in the existing strategies.

2.3.1 Data Replication to Satisfy Objectives Other Than

Performance

Arguably the most widely considered objective by data replication in the cloud is the

satisfaction of a desired level of availability. Availability of data sets often depends

on the availability of the nodes hosting them or their system load, as overloaded
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nodes will not be able to serve requests. Increasing availability of data therefore be

satisfied by increasing the number of replicas accordingly.

Cost-effective Dynamic Replication Management (CDRM) (Wei et al., 2010)

highlights that having too many replicas does not increase availability but instead

results in diminished returns. CDRM calculates and maintains a minimum number

of replicas to satisfy a given level of availability. In the considered cloud storage, data

sets are fragmented into several blocks. Authors calculate the availability of data

sets depending on the availability of each of their fragments. With this information,

CDRM calculates a required number of replicas for each fragment. Placement of

replicas is performed in such a way that balances the load on all sites. Reducing

access skew ensures that all of the fragments are served without causing a bottle-

neck. As a consequence of balanced load, the authors also observe increased access

performance. Investigating the relationship between the number of replicas and the

level of availability has been the focus of other studies as well (Myint and Naing,

2011). Another approach that is very similar to CDRM (Sun et al., 2012a) also

deals with finding minimum number of replicas from a data popularity point of view

in cloud storage clusters. In this work, not all data but only a subset of files which

exceed an access threshold are considered for replication.

It is also possible to achieve a desired quality of service from an availability stand-

point by calculating the minimum level of redundancy with respect to heterogeneous

cloud resources (Pamies-Juarez et al., 2011). In these heterogeneous environments,

availability calculation is performed with respect to each cloud site having different

reliability levels. This heterogeneity in reliability also determines how many replicas

can a cloud site is trusted to host as well. The issue of reliability can also be handled

as a fault-tolerance problem by mathematically modeling failure rates of cloud sites
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(Sun et al., 2012b). This way, the mentioned study makes it possible to satisfy the

availability objective through a fault-tolerance framework based on data replication.

Modeling a data placement strategy to improve availability can be also be achieved

through custom economic cost models. Some present an auction model to imple-

ment a replica placement policy in a large-scale cloud storage environment (Zhang

et al., 2014). If the desired availability level cannot be maintained, a bidding is

held to determine some placement for a new replica. Bidding price is dependent

on several properties of the nodes including failure probability, network bandwidth

and available space. Some performance increase is also observed as a consequential

benefit of data replication. Others deal with a similar problem in a multi-cloud con-

text (Abouzamazem and Ezhilchelvan, 2013), where tenants receive services from

multiple cloud providers. These examples use a custom economic model that is

tailored to take into account the heterogeneity caused by resource and pricing varia-

tions among multiple cloud providers. Similarly to existing strategies, this economic

model is used in order to minimize a cost model(Miglierina et al., 2013).

Some other strategies deal with availability as a reliability issue regarding the

cloud sites (Li et al., 2011, 2016). While availability is a frequently considered objec-

tive, what sets these two strategies apart is their consideration of cost-effectiveness

in satisfying availability. By determining the duration to keep replicas according to

a reliability metric, these strategies can optimize the number of replicas for each file,

hence saving provider costs on storage resource.

In another similar effort, Skute is introduced by Bonvin et al. (2010a) as a cost-

efficient data replication strategy based on a virtual economy that takes into account

marginal utility, storage usage and query load. Virtual nodes act autonomously and

they periodically announce their rent to other nodes. Moreover, nodes also accu-
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mulate wealth by answering queries and spend this wealth on other nodes to store

replicas on them, according to their rent. Skute self organizes replica configura-

tion among the virtual nodes to minimize communication cost while maximizing

economic benefit. Even though the strategies of this type utilize some form virtual

economy, it is not an actual monetary cost model of the provider-tenant relationship

(Bonvin et al., 2010b).

Increasing availability by replicating popular data closer to the locations that

originate most amount of requests is also a frequently researched problem. Some

strategies even propose mechanisms to predict future accesses based on historical

access records to preemptively replicate data to meet the increased demand (Ridhawi

et al., 2015). Moreover, some other strategies deal with data popularity that peaks

for a short amount of time, and then tapers off (Qu and Xiong, 2012). In order

to deal with the quick burst of popularity, these data replication strategies quickly

respond and change the replica configuration accordingly. Increasing data locality

based on popularity also decreases network consumption (Mengxing et al., 2013).

Zeng et al. (2016) deal with replica creation and placement in cloud storage

systems dealing with balanced load. In their work, cloud hierarchy is described as

service providers buying services from cloud vendors and in turn, clients buying

services from these service providers. Authors aim to minimize costs of the service

providers while maximizing storage utilization for users. They measure quality of

service and calculate an importance metric of data sets. What to replicate is then

determined according to the importance metric. Replica placement is performed in

a way that maximizes data transfer volume per unit expenditure.

An interesting objective for data replication is to specifically target some ex-

penditure that is particularly interesting in the cloud. In this respect, some data
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replication strategies (Boru et al., 2015a,b) focus on minimizing energy consump-

tion and communication delays through data replication. These strategies take data

access frequencies into account for a periodical replica reconfiguration. During this

periodical assessment, the replication strategy predicts a future value of data sets

that include energy and bandwidth demand. According to this estimation, a suitable

placement is found for the replicas to minimize their power and bandwidth consump-

tion in the following time periods. Another strategy (Maheshwari et al., 2012) with

a similar aim takes the idea further by integrating data placement strategy to be

linked with the power controller for a storage cluster. This way, replicas can be

reconfigured to scale the cluster up or down and turn of inactive sites according to

workload changes in order to save power.

2.3.2 Data Replication for Performance Objective without

Economic Consideration

While availability-focused strategies can observe some performance improvement as

a result of data replication, this performance increase is not generally resulted from

an enforcement by the SLA. In other words, performance is usually not among the

service guarantees put forward in the SLA contract to the tenant (Tos et al., 2016)

in the strategies of the previous subsection.

The strategies in this subsection commonly takes performance SLA into account

and elastically adjust the number of replicas in some way to ensure performance

guarantees to the tenant. Some strategies such as RepliC (Sousa and Machado,

2012) perform this task in an elastic multi-tenant database environment. RepliC

monitors the system utilization against workload changes in order to handle the

variation by directing transactions to the replicas with available resources. As a
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result, RepliC strategy satisfies QoS with minimal SLA violations.

Increasing data locality, more specifically spatial locality through data replica-

tion yields increased performance with strategically placing replicas closer to the

requestor sites. Even though some strategies do not directly consider performance

as an objective, increased performance is observed as a consequence of data repli-

cation (Lee et al., 2015). Another form of increasing locality of data for improved

performance is focusing on temporal locality. In this manner, some strategies argue

that frequently accessed data sets will likely stay popular in the future (Jayalakshmi

and P, 2015) and decide what to replicate according to the mentioned popularity

assessment. This is a simple but effective strategy for satisfying performance guar-

antees as evidenced by RTRM strategy (Bai et al., 2013). When accessing popular

data is causing a higher-than-desired average response time, these data sets are

replicated to resolve the performance issue. What is interesting about RTRM is

that it replicates not all but just popular data in order to conserve resource usage.

Multi-objective optimization model for data replication is another interesting

approach, as described by MORM strategy (Long et al., 2014). Establishing mathe-

matical models for multiple objectives including availability, response time, network

latency; data placement can be performed according to an optimization function

that takes these objectives into account. This way it is possible to satisfy more than

one SLO simultaneously.

The idea of dynamic provisioning of data is employed in database manage-

ment systems in the cloud as well. Sakr and Liu (2012) introduced an SLA-aware

customer-centric strategy, in which the database servers are scaled in and out accord-

ing to SLA requirements. As the main SLA objective for the decision process, they

chose the total execution time of transactions. In the proposed strategy, cloud sys-
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tem is closely monitored and cloud providers declaratively define application specific

rules to adaptively scale resources. While SLA-aware provisioning is beneficial for

scaling, economic impact of the replication for the cloud provider is not considered

by this strategy.

While performance benefit can be had by balancing the load of sites, it is also

possible to increase performance by decreasing network delays in data access. Sharov

et al. (2015) present such a data replication strategy for leader-based cloud storage.

One replica of each data set is elected as a leader that coordinates the replication

tasks. While all replicas may be used for a read operation, leaders often respond to

reads or write transactions. The authors state that placement of leaders impact the

performance. They propose three algorithms to handle the placement of the leaders,

voters and the replicas to reduce the latency of the data access operations. They

show that their strategy improves data access latency by up to 50% in a distributed

file system.

Not all data replication strategies deal with performance as a temporal measure

of data processing (e.g. response time). Especially in content delivery networks,

performance objective may just consist of delivering the data to the requestor. In

this sense, AREN (Silvestre et al., 2012) is a good example of enforcing SLA as a data

delivery guarantee. AREN performs popularity-aware data replication to optimize

bandwidth usage to minimize SLA violations and reduce storage consumption to

improve overall user experience.

On a similar performance objective, Zhao (2013) deals with replication delay, i.e.

how quickly a database server refreshes all replicas. If the replication delay is longer

than a predetermined threshold, new replicas are created to resolve performance

degradation. This strategy aims to satisfy the SLA in a tenant-centric fashion,
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hence the provider profit is not considered. In another study (Sakr et al., 2011)

discuss an elastic, cloud-based database management system that enables automatic

management of data management tasks, including a rule based implementation of

replication decisions.

2.3.3 Data Replication for Performance Objective with Eco-

nomic Consideration

Kumar et al. (2014) proposed SWORD, a workload-aware data placement and

replica selection scheme. Authors introduced a new metric named query span, which

is the average number of nodes used in execution of a query. Their approach aims to

minimize query span in order to reduce the communication overhead, resource con-

sumption, energy footprint, and transaction cost. They claim that SWORD deals

with performance degradation with incremental repartitioning of data. Although

provider profit is not a focus of this study, the authors show the effectiveness of

their work by doing an experimental analysis to measure query span and transac-

tion times.

Minimizing cost of resources can also be considered in a heterogeneous cloud

context (Mansouri et al., 2017). Datacenters in different locations can have varying

costs for storage, network etc. for placing replicas. A replication strategy should

take advantage of this heterogeneous pricing while responding with replication to

future variations in workloads. As a common theme in many other distributed

environments, reducing network transfers between datacenters through replication to

both ensure performance due to faster access to data and provider costs by utilizing

more expensive network links less frequently is also present in the cloud systems

context (Vulimiri et al., 2015).
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Xiong et al. (2011) present a resource management strategy that uses machine

learning techniques to return an optimum amount of profit from the tenants in a

multi-tenant cloud database context. They employ a predictive model to determine

a CPU and memory allocation configuration that yields a minimum amount of

penalty cost for a given workload. The authors vary the number of replicas to

balance the cost of hosting and managing the replicas against the improvement in

the performance.

A dynamic data replication strategy is proposed by Gill and Singh (2016) for a

heterogeneous cloud environment. Their strategy keeps performance and availability

at a desired level while optimizing the cost of replication. The cost of replication

is calculated by the unit replication cost per datacenter and whether a replica is

placed there. A metric called replica factor is used to calculate weighted access

frequencies. Replica factor is compared with a threshold for making replication

decision. Placement of replicas is performed with an optimization technique that

gets lowest replication cost with highest value of replicas.

Janpet and Wen (2013) designed a data replication strategy to minimize data

access time by finding the shortest access path to data objects. They model access

frequency, delay and replication budget to find the closest, most suitable node for

replica placement. Replication budget is predefined and it is only used as a limiting

factor for the users in such a way to regulate number of replicas. A detailed eco-

nomic relationship between the users and the cloud provider is not addressed. The

experimental study shows that by placing data objects closer to the nodes with high

access frequency, response time is improved.

A small subset of data replication in the cloud deals with managing how the

virtual machines are provisioned on physical hosts. According to provider cost and
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performance objective (Ghanbari et al., 2012; Casas et al., 2015). These type of

strategies deal with determining how many virtual machines are necessary to per-

form a set of tasks owned by multiple tenants. Files required for the execution are

replicated alongside the virtual machines in order to address the changing demand

in the task execution.

2.3.4 Analysis

While many challenges of traditional large-scale data management systems are still

valid in cloud systems, there are some new issues that should be taken into account

when dealing with data replication in the cloud. These new issues include elastic

adjustment of the resources and renting of the services as an utility with pay-as-

you-go pricing to name a few. One particular aspect of the cloud that is interesting

for data replication is the provider’s point of view in terms of monetary cost of

operating a cloud in a multi-tenant environment (Lang et al., 2014).

In traditional systems, many available data replication strategies create as many

replicas as possible to achieve higher system utilization. Especially in federated

systems like data grids, maximized utilization is pursued in order to have maximum

performance and prevent resources to be left idle. However, such an approach may

not be economically feasible in cloud computing. Cloud providers expect to return

some profit from their business relationship with the tenants. Therefore, such an

aggressive data replication approach, while possibly satisfying performance, may

also result in higher-than-desired operating cost for the provider. Creation and

maintenance of an unnecessarily high number of replicas are therefore inevitably

bound to have an impact on the provider profit.

As a result of the economic expectations of the provider, new replicas should be
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added in order to satisfy SLA requirements, while the removal of replicas occurs when

these objectives are satisfied over time. Since SLA requires only the satisfaction of

a given level of a quality of service metric, e.g. availability, performance; ideally,

the provider should aim to supply the promised service quality, without trying to

overachieve. In other words, pursuing best performance for the tenant is unrealistic

and most likely a wasteful endeavor for the provider. Instead, the provider should

focus on delivering an acceptable quality of service that will maximize its profits.

Therefore, in cloud systems, major questions of what to replicate, when to repli-

cate, how many replicas to create and where to place these replicas must be answered

in such a way to satisfy the SLA in an economically feasible way (Tos et al., 2016).

2.4 Conclusion

In this chapter, we studied the state of the art on data replication in some large-

scale data management systems. We observed how data replication strategies are

adapted their objectives as the computing paradigm is shifted from federated data

management systems such as data grids towards economy-based systems, namely

cloud computing.

The most common theme in data replication in data grid systems is the emphasis

on data access times. Most studies on data replication in data grid systems specifi-

cally focus on scientific applications that run on data grids. As multiple institutions

access the data that is often generated at a single origin, e.g. physics experiments at

CERN, data replication is primarily aimed towards making it easier for the clients

to quickly access this data. Other issues such as monetary cost of data replication is

often not a visited issue by almost all data replication strategies that are proposed
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for the data grid.

On the cloud computing side of the fence, existing data replication strategies are

geared towards a wider selection of scenarios. Albeit some strategies still target a

scientific cloud environment, many other strategies also exist to deal with content

delivery, database management systems and various other applications. As cloud

computing is nowadays being immensely popular, this was not a surprising outcome.

What was relatively surprising is the decision criteria used in the vast majority of

the existing strategies. Cloud computing, as described by Foster et al. (2008), is an

economy-based architecture. Many existing strategies deal with availability with a

minority of them considering performance as well, but studying economic impact

of replication is still open for new research. Only a handful of data replication

strategies proposed for the cloud take into account performance and economic benefit

simultaneously.

Studying the related work on data replication served us as an evidence of the need

of cost-effective data replication strategies that are specifically tailored for the needs

of the cloud systems, including satisfaction of SLA-based performance objectives

and profitability of the cloud providers. In other words, the work presented in this

chapter further reinforced the motivation behind this thesis.
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Chapter 3

Proposed Data Replication

Strategy

Abstract

Meeting performance expectations of tenants without sacrificing economic benefit is

a tough challenge for cloud providers. In this chapter we discuss APER, the proposed

data replication strategy that satisfies both performance and provider profit criteria

simultaneously. APER estimates the response time of database queries. If the

estimated response time is not acceptable, the bottleneck resource is identified.

Then, the course of action for data replication to resolve the bottleneck through data

replication is determined. Data placement is heuristically performed in such a way

to satisfy the query response time at a minimal cost for the provider. Consequently,

this chapter provides the details of response time and profit estimation models and

the actual data replication strategy itself.
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3.1 Introduction

As briefly discussed in Chapter 1, simultaneous satisfaction of performance objective

and provider profit is the core aim of this thesis. Proposed cost model predicts

whether a newly arrived tenant query would satisfy the performance guarantee and
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economic model is responsible for assessing whether processing of that particular

query is profitable for the provider. Neither of these models are enough on their

own to form a complete data replication strategy as they are merely tools to assist

in making replication decisions. Hence, this chapter describes the proposed strategy

for Achieving query Performance in the cloud via a cost-Effective data Replication

(APER), as well as how the two models are integrated in the replication decisions

at the core of the proposed strategy.

APER takes advantages of some properties of cloud systems, such as a global

network hierarchy and heterogeneous resource availability and pricing. Therefore,

we start with the chapter by laying out the details of the considered cloud envi-

ronment and how the various aspects of the cloud would impact APER on making

replication decisions. Afterwards, the details of when to start data replication, how

many replicas to create and where to place the newly created replicas are discussed.

Of course, all of these replication decisions are handled with the consideration of

performance and provider profit objectives. For each query, APER tries to make a

replication decision that satisfies the tenant’s performance expectation with return-

ing most amount of profit for the provider.

APER deals with database queries for analytical purposes, i.e. query processing

for OLAP applications. Therefore, the proposed data replication strategy deals

with a cost-effective replica management in a read-only data management context.

Other challenges that are typically associated with data replication, e.g. consistency

of data updates, are not in the scope of this thesis.
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3.2 Cloud Topology

Cloud providers often establish multiple facilities in separate geographical regions

for a multitude of reasons, including providing services that span across the globe.

Each region may contain several subregions. These subregions are cloud facilities

that host a number of nodes that provide computational power and storage to the

tenants. The cloud system we consider consists of geographical regions with each

region containing a number of datacenters. Expectedly, each datacenter in turn

contains a number of servers, i.e. virtual machines (VM), that reside on physical

hosts. Each server is equipped with computational resources, e.g. CPU, network,

storage, to contribute during query execution.

Regions, datacenters and servers are interconnected via network links in a hier-

archical manner. This hierarchy describes the network bandwidth as it is relatively

cheaper and far more abundant inside a datacenter while it is more expensive and

less abundant between regions where Internet infrastructure is usually employed. As

the network hierarchy goes from inter-node links to inter-region links, bandwidth

abundance decreases and bandwidth cost increases (Park et al., 2004). A typical

example of this cloud hierarchy is depicted in Figure 3.1.

Tenants utilize the services they rent from the provider by placing queries to the

cloud. These queries require data sets that may reside on multiple servers scattered

around different geographical regions. From the tenant’s perspective, it is essential

for the response time of an average query to be within the threshold defined in

the SLA. The cloud provider aims to satisfy the SLA with the maximum amount of

profit. The essence of the proposed strategy contains two models. Former is the cost

model based on a response time estimation and latter is the economic cost model

used for provider profit estimation.
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Region

Subregion

Inter-region link

Intra-region link

Figure 3.1: An example cloud topology showing regions and subregions (datacen-
ters).

It should also be noted that, processing data in the cloud has many challenges

including distributed execution and partitioning. The focus of our study is only on

the data replication aspect of data management in the cloud.

An important characteristic that differentiates the cloud from traditional data

management systems is the penalty mechanism. Should an SLA breach occur, the

provider is obligated to pay an agreed upon monetary sum to the tenant (Kouki

et al., 2011). In our case, when the actual response time is found to be greater than

the threshold defined in the SLA, it is indicative of an SLA violation. It is therefore

important to note that, penalties play an important role in the economics of the

cloud.
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3.3 Data Replication Issues

Any data replication strategy should be addressing a few key concerns in the de-

cision process for replication to constitute a complete strategy that is suitable for

managing data for satisfaction of a certain objective. Some of these concerns have

been described in many traditional systems, particularly in data grids (Ranganathan

and Foster, 2001), as what to replicate, when to replicate, and where to place the

replicas. However, in economy-based data management systems, i.e. particularly in

cloud systems, these decisions must be made from a cost-efficient perspective. We

therefore, extend these considerations in the data replication process to take both

the tenant and provider’s point of views into account.

First item on the agenda of any data replication strategy should be correctly

identifying what data to replicate. Especially in database query processing, a query

may require multiple relations during the execution. A replication strategy should

correctly identify if any of these relations poses a bottleneck that may hamper the

response time of the query. Incorrectly identifying what to replicate would just result

in wasted resources without any actual benefit for performance. In the proposed

strategy this step is handled by the response time estimation model.

When to replicate is the next important step towards performing data replication.

A set of solid criteria based on the desired goal to achieve is key at this step.

Replicating too early or too frequently would result in inefficient use of resources

and also reduce the performance due to frequent re-occurrence of the replication

overhead. Too late or too lazily performing data replication is also harmful since

it would erase the benefit of data replication due to missing the opportunity for

providing actual benefit.

Degree of replication is another important issue in data replication. Too few
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number of replicas may not satisfy the data access load of the queries while too many

replicas would increase data management costs for the provider due to wasteful use

of resources. A good middle ground is to dynamically adjust the degree of replication

according to the changing demand of tenant queries.

Placement of the planned creation of replicas is equally important as the previous

issues. While finding the best placement is a costly venture due to it being an

NP-complete problem (Tang and Xu, 2005), finding a good placement in a timely

manner to satisfy the requirements of the system is key in this step. Therefore, a

data replication should find a cost-effective placement quickly in order to reduce

the overhead of data replication and not lose time over trying to find the optimal

placement.

Finally, the removal of unnecessary replicas should also be handled by the data

replication strategy. Over time, some replicas may become unused due to changing

demand in the data management system. To free up resources for future replicas

and increase profitability by reducing resource consumption, these replicas should

be retired from the system as the queries come and go through the cloud.

In the following sections, we discuss how APER strategy deals with these issues

of data replication in a cost-effective manner to satisfy the performance guarantees.

3.3.1 Replication Decision

First, and most fundamental decision in APER strategy is whether to actually per-

form data replication or not. The replication decision depends on the fulfillment of

two important criteria. (i) If the estimated response time (TC) of a queryQ is greater

than the threshold response time enforced by the SLA (TSLO) and (ii) processing of

that particular query is estimated by the profit estimation (PQ) to generate a min-
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imum desired profit (PT h) for the provider, with the inclusion of potential creation

of any new replicas. The steps of making the decision to replicate are depicted in

Algorithm 1. Of course, the profitability prediction of the query includes the cost

of new replicas as well.

Algorithm 1 Replication decision on query processing.
1: Receive query Q
2: TC ← Estimated response time of Q
3: if TC > TSLO then
4: Select bottleneck data for replication
5: Find a placement for new replicas that would satisfy TC < TSLO

6: PQ ← Estimated profit by executing Q with the new replicas
7: if (PQ > PT h) ∧ (TC < TSLO) then
8: Place the new replicas
9: end if
10: end if
11: Continue executing Q

When a tenant submits a query to the cloud for processing, first order of business

is to predict whether that particular query can satisfy the response time objective

with the given execution plan. Response time estimation of the cost model of APER

handles this task. Moreover, in the given query plan, which operator causes the

bottleneck that would ultimately result in an SLA breach is identified by the response

time estimation.

Dealing with a query that consists of multiple operators, it is important to mea-

sure which operator (hence what data related to that operator) will experience a

bottleneck in what resource (e.g. network, CPU) in order to resolve the bottleneck

and satisfy SLA through data replication. Therefore the data associated with the

replication is always the bottleneck data for each replication event during query

execution.

In case a query is predicted to violate the SLA performance threshold, then
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comes the latter part of the replication decision. The second important criterion to

fulfill is the provider profitability. Assuming that creation of some new replicas is

considered, the processing of the query must still be profitable with the inclusion of

the costs associated with the new replicas. Of course, this necessitates finding an

economical placement for the new replicas. The provider expects to return a desired

amount of profit (PT h), on average, from every query execution. For this purpose,

the profit estimation model predicts the satisfaction of this condition. Only the

simultaneous satisfaction of the two mentioned criteria would trigger the replication

to be carried out.

As described, APER makes the decision whether to replicate on arrival of each

and every query. Another alternative is to perform the replica reconfiguration on a

periodical basis. Of course, the calculations required for estimating response time

and profit might introduce some overhead to query execution, APER has the benefit

of immediately responding to changing trends in the queries arriving at the cloud.

While periodical replica reconfiguration may have less overhead, an obvious draw-

back of such an approach would be a slow response to changing access trends. A

further discussion on this is left for future work as mentioned in Chapter 5.

3.3.2 Replication Degree

Determining the number of replicas for each piece of data is an interesting aspect of

data replication. Too many replicas may cause wasteful use of resources, while too

few replicas would not be enough to satisfy expected performance level. Some data

replication strategies predefine (Fu et al., 2013) a degree of replication for the data

management system. The number of replicas may then be re-adjusted periodically.

APER makes the replication decisions dynamically and on demand, on arrival of
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each new query. Therefore the degree of replication is also determined in a similar

manner.

When the necessity of data replication arises and the required conditions for

going through with the replication is met, APER increments the number of replicas

for a particular fragment by one. APER aims to place the replica in such a way that

it would satisfy the needs of both the provider and the tenant. Therefore, there is

no need to create more than one replica at a time for a particular fragment. It is

true to say that the number of replicas is dynamically adjusted as the queries are

processed in the cloud.

Naturally, a given query can consist of a number of operators that require pro-

cessing of several fragments. It is possible that more than one of these fragments can

be predicted to cause a bottleneck. In cases like this, of course, APER can consider

replicating as many of these fragments as it is necessary to resolve the bottleneck

condition to satisfy the response time. However, each of these fragments would still

be replicated incrementally. In this manner, APER does not enforce an upper limit

for the number of replicas of any particular fragment. Consequently, as long as

it is still profitable and necessary, the number of replicas of any fragment can be

incremented many times as the queries come and go.

Satisfying an agreed upon performance for the tenant is indeed a crucial part of

APER. However, ensuring the availability of fragments is another objective that is

a commonly present in SLAs (Stamou et al., 2013). Therefore, availability should

not be ignored for the purpose of focusing on performance. There are many studies

in the literature that dare dealing with replicating data for improved availability

(Qu and Xiong, 2012; Abouzamazem and Ezhilchelvan, 2013). Therefore, we do

not revisit this issue in this strategy. Our strategy simply maintains a minimum
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number of replicas (e.g. triplication in the HDFS) to satisfy a minimum required

availability for each fragment. The number of replicas are never allowed to fall below

this minimum during replica removal operations.

3.3.3 Replica Placement

The two estimation models makes it possible to identify resource bottlenecks to de-

termine what to replicate and also decide when the replication is necessary. However

it is the strategic placement of the replicas that actually achieves the response time

and profitability objectives during execution.

A candidate server for placing the new replica should have low load, enough

storage space and sufficient network bandwidth to serve the new replica to the

requestors. Furthermore, the candidate placement should also incur low cost to

store the new replica.

Clouds can be heterogeneous in many ways. Storage, CPU and network costs

for the provider can change from region to region, or datacenter to datacenter for

several reasons, e.g. different prices of raw materials. Also, not all regions can

satisfy the response time of queries originating from other regions. For example,

accessing a fragment in a datacenter in Europe from another datacenter in North

America can satisfy the response time SLO, while a datacenter in Asia may fail to

do so. Therefore it is a very hard task to find the best placement that satisfies the

response time SLO with the lowest cost.

Finding the best placement requires all servers in the cloud to be evaluated for

load, storage and network resources, as well as considering the cost of storing it

there. Taking into account that the cloud consists of a seemingly infinite number

of servers, this approach is non-trivial. Finding a placement for the new replica
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should be completed in a time sensitive manner. Lingering on for pursuing the best

placement would waste time and in turn erase the benefit of actually performing the

replication.

For every query execution, when the necessity of creating a new replica of a frag-

ment arises, a placement heuristic is used by our strategy to find a good placement.

Considering all geographical regions of the cloud, only a number of them may satisfy

the response time SLO by having mathematically enough network bandwidth. The

placement heuristic simply determines this by evaluating the network bandwidth

between the requestor and originator regions. The next issue is to find which par-

ticular datacenter in these subset of regions has the lowest execution cost with the

new replica. The placement heuristic reduces the search space by first eliminating

unsuitable regions and datacenters successively and then finding the first suitable

server instead of searching for the best one.

Let the cloud L consist of a number of geographical regions as L = {G1, G2, ..., Gi}.

In turn, each of these geographical regions may contain a number of datacenters as

Gi = {Di,1, Di,2, ..., Di,j}. Let an estimation function T ′ in Equation 3.1 determine

the predicted response time of executing a query Q with the assumption of a new

replica of Rm
n,l placed to region Gi. A candidate subset G′ regions that can satisfy

the response time SLO can be found by evaluating all regions by the T ′ function.

G′ ⊂ G|T ′(Q, Rm
n,l, Gi) < TSLO (3.1)

In the next step, the placement focuses on the provider profit. Among the data-

centers belong to the G′ set of regions, placement heuristic choses the D′ datacenter,

which offers storage for Rm
n,l that results in the lowest cost of execution for the query

Q, as depicted in Equation 3.2.
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D′|min(Cost(Q, Rm
n,l, Di,j) ∧Di,j ⊂ G′) (3.2)

Network bandwidth inside a datacenter uses the dedicated local network infras-

tructure. This highly controlled network capability is more or less uniform. There-

fore if a datacenter is found to have sufficient network capability, it does not matter

to store the new replica on which particular server, as long as the candidate server

has low load and enough storage.

Nm ∈ D′|load(Nm) < Thload ∧ freeSpace(Nm) ≥ sizeof(Rn,l) (3.3)

The replica is placed on the serverNm of the datacenterD′. The condition forNm

is to have enough storage space to store the fragment Rn,l and have a computational

load that is lower than a load threshold Thload as shown in Equation 3.3. Thload is a

system parameter that is predetermined by the cloud provider and may be included

Algorithm 2 Placement heuristic for placing new replicas.
1: set G′ ← empty set
2: for all Regions Gi ∈ Cloud L do
3: if T (Q, Rm

n,l, Gi) < TSLO then
4: Add Gi to set G′ {regions that has enough bandwidth to satisfy response

time}
5: end if
6: end for
7: D′ ← min(Cost(Q, Rm

n,l, Di,j) ∧ (Di,j ⊂ G′)) {datacenter that offers the lowest
cost with the new replica}

8: for all Servers Nm ∈ D′ do
9: if load(N) < Thload and

freeSpace(Nm) ≥ sizeof(Rn,l) then
10: place on Nm {the server with lower-than-threshold load and enough free

storage}
11: end if
12: end for
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in the SLA.

Using the equations that describe the search process for candidate servers, the

complete algorithm for finding placement for new replicas is depicted in Algorithm 2.

3.3.4 Replica Retirement

Over time, some replicas may get less and less frequent accesses due to changing

trends in the arrival of the queries. Keeping these replicas in the system consumes

precious storage and causes unnecessary costs for the provider. Therefore, retiring

unused replicas is a way of eliminating burden on the provider profit. While other

replication decisions are made on a per-query basis, determining which replicas are

sparsely used is a task that must be undertaken with respect to usage information

over time.

APER periodically evaluates all replicas to decide on their eligibility for removal.

The duration of this period (Perremove) for considering replica removal is determined

by the provider. If the response time SLO is satisfied by the queries that require

a particular relation, in a certain period (Persat), it is regarded that some replicas

of the fragments of that relation may be unnecessary, therefore safe for removal. In

other words, that a relation Rn can be fragmented into l fragments as Rn,l and these

fragments may have replicas on j servers as Rj
n,l. If the queries that require Rn have

no difficulty in satisfying the response time over a predetermined period of time,

APER may consider that there may be an abundance in the degree of replication

for the fragments of Rn.

In order to determine which of the mentioned replicas are unnecessary, each

of them are checked for their access histories. Among them, those with an ac-

cess count below a threshold (Thaccess) are retired from the cloud. Of course, the
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number of replicas for any particular fragment is never allowed to drop below the

minimum number of replicas (ThnumRep) to satisfy a given availability level. The

replica removal algorithm is depicted in Algorithm 3. The thresholds for the re-

moval operation and the time period to initiate replica removal parameters are left

to the discretion of the provider. If cloud providers desire a more aggressive replica

removal for quickly freeing up cloud resources or vice versa, they are free to adjust

these parameters accordingly.

Algorithm 3 Retirement of unnecessary replicas.
1: for Each period of Perremove do
2: for all Rn relations do
3: if Queries that require Rn satisfied SLA for a period of Persat then
4: for all Rn,l fragments of Rn do
5: for all Rj

n,l replicas of fragment Rn,l do
6: if accessCount(Rj

n,l) < Thaccess and
numberOfReplicas(Rn,l) > ThnumRep then

7: remove Rj
n,l

8: end if
9: end for
10: end for
11: end if
12: end for
13: Reset access counts of all replicas
14: end for

3.4 A Cost Model for DB Query Processing

As discussed in Chapter 1, APER, data replication strategy proposed in this thesis

regards both the satisfaction of query performance and provider profit simultane-

ously. In this section, how the former criterion, namely the performance metric is

treated in the proposed strategy. The data management aspect of this thesis is fo-

cused on a relational database system hosted in the cloud, response time of database
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queries is regarded as the primary metric for performance.

Processing a database query in a distributed context involves a set of steps that

include query decomposition (syntax and semantic analysis), resource discovery,

generating query plans etc. among many other tasks that are handled by the data

management system. APER starts with the assumption that, a query optimizer has

already generated a near-optimal query plan. APER strategy is positioned after

generating the mentioned query plan and just before carrying out processing of the

query. Hence, query plan generation and other related tasks of query execution are

not a focus of this thesis as APER only deals with the data replication aspect in the

query execution process.

3.4.1 Response Time Estimation

The query plan generation mechanism of DBMS tries to generate a near-optimal

query plan according the state of the cloud in terms of location of required relations,

load of the servers etc. The generated query plan may not still satisfy performance

threshold indicated in the SLA. In other words, a near-optimal query plan may not

necessarily guarantee the performance expectation of the tenant. The response time

estimation model in this section, is therefore aims to determine whether a given

query plan is viable or not in satisfying SLA.

3.4.1.1 Estimating Response Time of Database Queries

In distributed environments such as clouds, database queries can be processed by

participation of a number of servers. These servers process queries with (i) inter-

query parallelism as executing multiple queries in parallel in the cloud, and (ii)

intra-query parallelism as executing individual parts of any single query in parallel.
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During processing, database queries require relations, or fragments of relations to

be present. These fragments may be scattered across multiple servers. Processing

of a query constitute a multitude of operators that can be executed in a pipeline.

Furthermore, multiple operators can be executed in parallel with intra-operator

parallelism concept. These operators themselves may be divided to be executed

in parallel on multiple servers with intra-operator parallelism, which makes the

response time estimation even more challenging. Moreover, the result of an operator

often can be the input of another as intermediate results. Query processing is

therefore not a straightforward task, but it is a set of operations that are intertwined

in a complicated manner with presence of parallel execution.

Estimating response time of a query of such complex intricacies is a significant

challenge. Dealing with these issues, estimating response time of database queries

has been an active research area for decades, as the response time estimation con-

stitutes an integral part of query optimizers in DBMSs (Hsiao et al., 1994; Swami

and Schiefer, 1994). Therefore in APER, we benefit from several existing studies

(Tomov et al., 1999, 2004) to propose a response time estimation model that is

suitable for the proposed data replication strategy. These existing studies follow an

approach that estimates resource usage (e.g. CPU) by the queries. A novel aspect

of response time estimation in APER is that it uses the information on estimated

resource consumption by also considering the monetary cost of these resources in

replication decisions.

Estimating resource usage of each query as soon as it is submitted is a significant

challenge. Many issues as mentioned above, especially parallel execution complicates

the task of calculating an accurate estimation. Response time estimation for a sin-

gle simple query, i.e. without joins, is a relatively straightforward task (Tos et al.,
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2016). In these queries, there are no dependent operations and as a result, estimat-

ing response time is just an approximation of execution and data transfer times. In

contrast, estimating the response time of a query that consists of multiple join oper-

ators is significantly more difficult. Identifying pipelines, computational complexity

of each operator in these pipelines, the amount of data required to be shipped from

remote servers all come into play in estimating a complicated query.

R1 R2

Rn-1

Rn

⋈
⋈
⋈

(a) Left-deep query plan
Rn-1 Rn

R2

R1 ⋈
⋈

⋈

(b) Right-deep query plan

RnRn-1R2R1

⋈ ⋈
⋈

(c) Bush query plan

Figure 3.2: Query plans that are considered by the response time estimation model.

In order to model the response time estimation over a realistic case, we deal

with queries that consist of a multitude of hash join operations. In query plans

with multiple hash joins, left-deep, right-deep and bushy plans are investigated

(Figure 3.2). We design our response time estimation model to cover all three of

these query plan types. Generating query execution plans, and selecting a suitable
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plan for execution is not a part of this thesis. The scope of the proposed work begins

when a new query with a given execution plan is estimated to not satisfy the SLA

response time threshold. At that time, APER estimates whether this query plan

can satisfy the performance objective, and takes action accordingly.

Initially, APER is given a query execution plan P < Q, N > of a query Q that

will be executed on a set of servers N . APER estimates the response time of Q

by calculating the expected resource usage before the execution of a query takes

place. Accurate estimation of the usage of these resources is a significantly hard

task with considering both inter-operator and intra-operator parallelism. First step

in attacking this task is to identify the pipeline chains in the given query plan to

deal with inter-operator parallelism.

3.4.1.2 Intra-operator Parallelism

Intra-operator parallelism is another issue that must be addressed by the response

time estimation model. Intra-operator parallelism deals with parallel execution of

an operator on several servers and combining the results generated on each server

afterwards. No matter how the fragmentation was done by the DBMS, i.e. horizontal

or vertical, there may be response variations between the execution of an operator

on different fragments due to skew, available CPU etc. As a result, the response

time of an operator that is executed on multiple servers and on multiple fragments is

determined by the execution of the operator on a particular one of those fragments

that yields the largest amount of response time.

Let Ci be a pipeline chain in the query Q. This pipeline chain Ci consists of a

number of operators, Ci = {Oi,1, Oi,2, ..., Oi,k} that are executed in a pipeline. Let

an operator Oi,k to require a relation Rn for processing. Assuming that the relation
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Rn is fragmented into l fragments as Rn = {Rn,1, Rn,2, ..., Rn,l}, with replicas on j

servers as N = {N1, N2, ..., Nj}; the operator Oi,k will be executed on each of this

fragments in parallel as Oj
i,k. In this case, the estimated response time of Oi,k is

determined by the longest estimated amount of time it takes for Oi,k to execute on

a certain particular fragment Rj
n,l as shown in Equation 3.4.

TOi,k
= max

j
(T (Oj

i,k), TT r, TF in)|Oj
i,k ∈ Oi,k (3.4)

When an operator is executed on multiple fragments in parallel, the results are

required to be transferred to a final destination for combining. When estimating

the response time TOi,k
of the operator Oi,k, Equation 3.4 takes this into account by

considering transfer of results (TT r) and producing the final result (TF in), e.g. union

operation for joining horizontally fragmented relations.

3.4.1.3 Inter-operator Parallelism and Pipeline Chains

In order to determine the pipeline chains in the query plan, at the first step, APER

assesses in what order the operators are going to be executed. In this sense, when

we deal with inter-operator parallelism, we take into account both independent and

pipelined execution. In query execution, some operators block data flow between

operators (Garofalakis and Ioannidis, 1996; Tomov et al., 2004; Wu et al., 2013) that

is necessary for pipelined execution. For example, during hash join, hash tables must

be built before the probing stage. Therefore, these blocking operators are identified

and the query is deconstructed into pipeline chains according to them (Garofalakis

and Ioannidis, 1996; Tomov et al., 2004; Wu et al., 2013).

An example of how the pipeline chains are identified in the left-deep, right-deep

and bush query plans is depicted in Figure 3.3. The set of operators that belong in
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each pipeline chain are executed in a pipeline, until the last operator in the respective

pipeline chain, which is ultimately a blocking operator.

Scan R1 Scan R2

Scan Rn-1

Scan Rn

Ci

C2

Ci-1

C1

B    P

B    P

B    P

(a) Left-deep query plan

Scan Rn-1 Scan Rn

Scan R2

Scan R1

CiCi-1

C2

C1

B    P

B    P

B    P

(b) Right-deep query plan

Scan
Rn

Scan
Rn-1

Scan 
R2

Scan 
R1

CiCi-1C2C1

B    P B    P

B    P

(c) Bushy query plan

Figure 3.3: Pipeline chains in left-deep, right-deep and bushy query plans (Garo-
falakis and Ioannidis, 1996).

As a query plan can consist of any number pipeline chains and dependencies

among them, it is possible to show this relationship as a tree Y < V,E > (Fig-

ure 3.4). Vertices V of this tree represent each individual pipeline chain and edges

E represent the dependencies between them. With inter-operator parallelism, some

pipeline chains are executed simultaneously on different servers. This parallelism is

represented by each root-to-leaf path of the pipeline chain tree (Lanzelotte et al.,

1994; Özsu and Valduriez, 2011). In this sense, the response time estimation of a
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query can be formulated as follows.

Ci

Ci-1

C2

C1

(a) Left-deep query plan

Ci

C1 C2 Ci-1. . .

(b) Right-deep query plan

Ci

C2 Ci-1

C1

. . .

(c) Bushy query plan

Figure 3.4: Dependencies among pipeline chains in left-deep, right-deep and bushy
query plans.

Let C = {C1, C2, ..., Ci} be the set of pipeline chains containing a number of

operators in the query plan P . Moreover, let W = {W1,W2, ...,Wm} be the set of

the root-to-leaf paths for all ` leaf nodes of a pipeline chain tree Y < V,E >, in the

given query plan. Consequently, the estimated response time of the query Q is as

shown in Equation 3.5, with respect to dependencies and between pipelines.

TC = max
m

∑̀
1
T (V`)|V` ∈ Wm (3.5)

Estimated response time TC of the query Q is the estimated response time of

the longest execution branch (in terms of response time) in the pipeline chain tree

Y < V,E >. An execution branch in a query plan can consist of a number of pipeline

chain that are executed in succession as depicted in Figure 3.4. The response time



3.4. A COST MODEL FOR DB QUERY PROCESSING 91

estimation model takes this into account when dealing with multiple pipeline chains

in the query plan.

Considering that Ci consists of a number of operators, Ci = {Oi,1, Oi,2, ..., Oi,k}

that are executed in a pipeline, some operator depend on the first generated result

tuple of the previous operator further up the pipeline chain. In other words, opera-

tors that belong to the same pipeline chain does not necessarily start processing at

the same time. Therefore, for operators other than the first, there is a pipelining

delay, equal to the mentioned waiting duration (Lanzelotte et al., 1994; Özsu and

Valduriez, 2011). In order to estimate the response time of each individual pipeline

chain, this pipelining delay of each operator Oi,k in the pipeline chain Ci, must

also be estimated to be able to estimate the response time TCi
of pipeline chain Ci

(Lanzelotte et al., 1994; Özsu and Valduriez, 2011), as depicted in Equation 3.6.

TCi
= max

k
(TOi,k

+ pipeDelayOi,k
) (3.6)

Execution of Ci starts with processing Oi,1, therefore, starting time of Oi,2 de-

pends of the response time of Oi,1. This waiting time is the pipelining delay men-

tioned above. Response time estimation model recursively estimates the pipelining

delay of each operator by going back from the last one to the first since the pipelining

delay of the first operator in any pipeline chain is zero.

3.4.2 Resource Consumption

So far, the response time estimation dealt with how the pipeline chains are identified,

how they consist of multiple operators and how the execution of these operators

impact on response time estimation. The actual amount of time consumed by each
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individual operator has not yet been addressed. During execution, an operator

consumes CPU time resources for calculations, e.g. calculating hash tables, I/O

resource for data access e.g. performing scans, and network resource for shipping

fragments located in remote servers. Each of these resources consume time during

query processing, hence the response time of an operator is a combination of the

amount of time spent by the consumption of these resources.

In this subsection, we explain how the response time of an operator is determined

with respect to its resource consumption in terms of the resources mentioned above.

This process involves estimating the CPU, I/O and network usage of all operators

in their respective pipeline chains (Hsiao et al., 1994). This estimation will also

play a role in determining which fragments to replicate. Assuming that an operator

Oi,k in the pipeline chain Ci is executed on Rj
n,l fragment at server j, the estimation

model calculates which resource type will cause a response time violation by causing

a bottleneck.

3.4.2.1 CPU Consumption

Consumption of CPU by an operator depends on how much CPU time it is necessary

to be spent on actual CPU instructions. First consideration towards estimating CPU

consumption is the amount of data to be processed by an operator. Naturally, the

more data an operator needs to process, the longer the response time is expected to

be. In this sense, we take the terms t(Rj
n,l) and sRj

n,l) into account, which denote

the number of tuples and size of a tuple in the fragment Rj
n,l, respectively.

Some operators are more computationally expensive compared to others. For

example, hash table generation requires more instructions to be executed by the

CPU per a single byte of data, compared to relatively simple and cheaper scan op-
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eration. This variation between the operators are taken into account by the IPBOi,k

multiplier, which denotes how many CPU instructions are required by processing

one byte of data by any particular operator.

T CP U
Oj

i,k

=
t(Rj

n,l)× s(R
j
n,l)× IPBOi,k

rCP U
j

(3.7)

Consumption of the CPU resource by an operator is depicted in Equation 3.7.

In the equation, we have dealt with data size and number of instructions required to

process a unit amount of data. In order to have a result in the time unit, we divide

these multipliers by rCP U
j . rCP U

j indicates how many instructions the CPU of the

server j can process per unit amount of time. This value is scaled as the number

of operators executing simultaneously on a particular server changes. If more than

one operators are simultaneously processed on one server, CPU time is consequently

divided among them. Therefore, rCP U
j is a function of arrival rate, which affects the

number of operators simultaneously executing on the servers.

3.4.2.2 I/O Consumption

During query processing, the relations that are required for that query is read from

the disk of the server hosting the data. Whether it is for shipping the relation to

another server or processing the relation locally in a query, these operations consume

I/O resource on that particular server.

The amount of time of time spent on consuming I/O resource depends on the

size of the data read from the local storage and the I/O throughput specific to

that server, i.e. how many bytes can be read per unit amount of time. In both

cases described above, the same I/O consumption model is used to estimate the I/O

related response time component of the total response time of any particular query.
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In both components, the data size of Rj
n,l is utilized, similarly to the CPU con-

sumption model.

T I/O

Oj
i,k

=
t(Rj

n,l)× s(R
j
n,l)

r
I/O
j

(3.8)

I/O consumption is relatively straightforward. On the server Nj that hosts the

fragment Rj
n,l that is relevant in the processing of an operator Oj

i,k; the fragment

Rj
n,l is read over an I/O throughput of that particular server, rI/O

j as depicted in

Equation 3.8.

3.4.2.3 Network Consumption

When a server participates in processing of a query, ideally it is desired for this

server to have the relevant data to be locally present. In some cases, a portion of

required data may be required to be shipped from remote nodes. In another case,

if the execution is migrated to another server due a reason that makes the initial

server to be temporarily non-viable for query execution, e.g. having a temporarily

high load, the associated data may also be required to another server alongside the

execution. These type of query processing scenarios require the consumption of

network resource. Obviously, consumption of network resource means a duration of

time to be spent for transferring data. Response time estimation model also takes

this into account when predicting response time of queries.

T Net
Oj

i,k

=
t(Re

n,l)× s(Re
n,l)

rNet
j,e

(3.9)

The equation for estimating the network consumption (Equation 3.9) is similar

to estimating I/O consumption in the way that both of them are base on the amount
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of data handled. This time, data transfer occurs between two servers, therefore the

estimated time spent on network transfer is determined by bandwidth rNet
j,e between

the local server Nj and the remote server Ne during the shipping of the remote

fragment Re
n,l. We assume that messaging delay for initiating the data transfer

process is constant, and included in the total transfer time.

3.4.2.4 Total Resource Consumption

The three types of resources that are consumed during processing of a query are

used in calculating the response time TOj
i,k

of the operators individually.

Of course, for each operator the consumption of these resources do not happen

sequentially. Their consumption are time shared on the executing server. For exam-

ple, CPU can start processing a relation that is shipped from a remote server to the

local server as soon as a meaningful amount of data e.g. a page, has becomes avail-

able locally. In that sense, the total resource consumption takes time sharing into

account by taking the maximum time spent with respect to time-shared utilization

of different types of resources as shown as shown in Equation 3.10.

TOj
i,k

= max((T CP U
Oj

i,k

+ T I/O

Oj
i,k

), T Net
Oj

i,k

) (3.10)

The resource consumption model used in response time estimation inevitably

makes some simplifications in order to rapidly estimate the response time of the

queries on arrival. Too complex of a model would increase the computational over-

head caused by data replication and in return possibly erase the performance gains

expected to be made through data replication. For this purpose, we assume that

CPU is occupied during I/O operations and tread the consumption of CPU and I/O

to be not happen simultaneously on a single server.
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It should be noted that all three types of considered resources take the data

size that is relevant to a particular operator into account. In real query processing

scenarios, some operators would need intermediate relations as input for processing

them. Intermediate relations are outputs of other operators that precede the actual

operator in the query execution plan. Since these intermediate relations simply do

not exist before the execution of the query starts, the DBMS may not have statistical

information about them, e.g. data size. Some research effort have been made to

estimate the result sizes (Vengerov et al., 2015; Harangsri, 1998) and cardinalities

(Swami and Schiefer, 1994) of the intermediate relations. We use the methods

proposed by these studies to obtain a more accurate estimated response time.

3.5 An Economic Model for DB Query Processing

in the Cloud

Cloud computing is a computer paradigm that brings several new challenges for data

replication strategies to deal with. These challenges have been discussed in detail in

Chapter 2. Among the new challenges of the cloud, a particular one is of significant

interest for the data replication strategy proposed in this thesis.

In contrast to other traditional data management systems that precede the cloud,

resources are rented to the tenants with an economy based model in cloud computing

(Foster et al., 2008). It is indeed true as the cloud providers rent the services to

the tenants in return of some monetary compensation from them. What this signify

is that, operating in the cloud should take economic impact of every decision into

account. More specifically, since the context of this thesis is in query execution

and data replication in a multi-tenant cloud environment; the economic burden of
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processing the queries and associated costs of data replication on the cloud provider

is of utmost importance.

The economic model presented in this section deals with the economic aspect of

the cloud while processing database queries with the presence of data replication.

Replication decisions are based on satisfaction of both the response time satisfaction

and provider profit generation. While the response time estimation handles the

former part of the condition, the economic part of whether the execution of a query

is still profitable for the provider with possible creation of new replicas is handled

by the economic model.

3.5.1 Estimating Provider Profit

Dealing with database management in the cloud, requires an immense undertak-

ing by cloud enterprises, similarly to delivering other cloud-based services. Cloud

providers establish enormous facilities to host computing resources and process data,

pay significant upfront investment in material and personnel, and occupy global

network links with transferring data throughout the globe. Inevitably, all of these

expenditures add up to a significant monetary sum for cloud providers as operating

costs.

For a cloud provider, the entire sum of investment and effort is motivated by

gaining economic benefit, namely returning a monetary profit (Buyya et al., 2009).

As it is the case for all business enterprises, the cloud providers seek profit from their

interactions with their tenants. Ideally, every interaction (e.g. query execution) with

a tenant should be profitable from the provider’s point of view.

While providers aim to return a healthy amount of profit for their benefit, tenants

demand a good performance for a reasonable price. Focusing on supplying a service
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with the best performance is often a costly pursuit for the provider (Tos et al.,

2016). Eagerly replicating data to attain the lowest possible response time may

result in high storage and network costs for the provider as a consequence. Among

the possible replication decisions, the data replication strategy should be able to go

through with the one that just satisfies the response time SLO and yield the most

amount of economic benefit to the provider. A profit estimation model is therefore

necessary to predict the monetary impact of the resource consumption of processing

queries.

Replication decisions are made at the per-query level. As a result, similar to

the response time estimation model, the profit estimation is also calculated for each

individual query. Equation 3.11 shows the provider profit (PQ) for executing a query

Q, which is the difference between the revenue and total cost (CQ) associated with

that particular query.

PQ = REVQ − CQ (3.11)

It is very straightforward to estimate provider profit with known revenue and

expenditures. What is challenging about profit estimation lies in the difficulty of

estimating revenue and expenditures for each query the provider processes for each

tenant. Some properties that are specific to cloud systems such as dynamically

adjusted service capability with pay-as-you-go pricing, heterogeneity of services and

their unit costs with respect to global region make it more challenging to estimate

the profit.
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3.5.2 Estimating Provider Revenue

Cloud providers are large business entities, and as such, it is possible for a provider to

have multiple revenue streams. However, in this thesis, we are only interested in the

revenue generated from the tenants for query processing. Therefore, in the proposed

economic model, rent is regarded as the only revenue source of the provider. In this

way, APER strategy estimates the average revenue expected from processing each

tenant query.

SLA terms include the details for the rent and the corresponding billing period.

A billing period is an agreed upon duration of time that the tenant acquires services

from the provider. The tenant pays the corresponding amount of rent (REV ) to

the cloud provider for the services acquired during each billing period.

Naturally, the provider desires to return a profit from each query execution.

APER calculates the per query revenue and cost estimates to predict an expected

profit for each query. However, in order to be able to calculate the per-query profit,

the SLA should also include the maximum amount of queries the agreed upon service

level handles per unit amount of time, i.e. maximum query arrival rate (AR), before

scaling the service up.

From the maximum query arrival rate and the duration of the billing period

(PER), it is possible to calculate an expected average revenue REVQ per query as

depicted in Equation 3.12.

REVQ = REV

PER× AR
(3.12)

It should be noted that, it is not realistically possible to know beforehand that,

how many queries a tenant will submit to the cloud with what arrival rate. There-
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fore, the revenue estimation calculates the average revenue expected from each ten-

ant query. Assuming that the set of services are elastically scaled up and down ac-

cording to the query arrival rate (and possibly other metrics) of a particular tenant,

revenue estimation provides quick prediction of per-query revenue that is accurate

enough for replication decisions.

3.5.3 Estimating Provider Expenditures

With a known amount of expected revenue from each query processed, next issue to

address is estimating the monetary cost of processing a particular query. Estimating

revenue is relatively straightforward to estimating expenditures, because revenue

prediction is based on an average. In contrast, expenditures caused by a particular

query depends on the cloud resources it will consume once the execution is started.

Therefore, estimating monetary cost of a query is a comparatively more difficult

task that involves more steps.

In the cloud environment, where distributed query processing is a natural occur-

rence, execution of a query Q may involve the participation of a number of servers.

The resources on these servers may be fully or partially utilized by the execution of

Q. These resources inevitably cost money for the provider (Greenberg et al., 2009).

As in response time estimation model, APER takes into account CPU cost (CU),

network bandwidth cost (CB) and storage cost (CS) resources, as well as cost of the

penalties (CY ) in the previous billing period. The sum of these estimated costs de-

termines the total cost of executing a particular query for the provider. These four

types of costs are shown in Equation 3.13 as they are used in the profit estimation.

How each of these cost items are estimated is described in detail in the following

sections.
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CQ = CU + CB + CS + CY (3.13)

In real world, cloud providers have many types of costs, ranging from employee

salaries to on-site physical security. These costs may not be directly linked to, or

rather caused by data replication or query execution. However, provider naturally

still would want to have enough profit margin to cover these costs as well. As

a result, we do not set the profit condition for triggering replication to PQ > 0,

but rather PQ > PT h. PT h describes a predefined threshold profit margin as the

minimum amount of profit a provider desires to generate from the execution of a

query.

3.5.3.1 CPU Cost

First cost item to estimate in the breakdown of total cost of processing query Q by

the provider is predicting CPU cost (CU). CPU cost depends on the CPU time that

is expected to be spend during the execution of a particular query Q. Queries can

be processed by the joint effort of a number of servers in a distributed environment.

Therefore, CPU cost is determined by the sum of CPU time consumption of each

server (Uj) that is expected to participate in the execution.

Let R = {R1, R2, ..., Rn} be the set of relations with l fragments as Rn,l that are

used in the execution of Q and N = {N1, N2, ..., Nj} be the set of servers that host

j replicas of these fragments as Rj
n,l and carry out the actual execution task. Then

the processing cost is as depicted in Equation 3.14.

CU =
∑

j

Uj × φj (3.14)
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Considering that the cloud is a heterogeneous environment, the unit processing

cost (φj) may differ according to which particular servers are utilized during exe-

cution. Unit processing cost is adjusted in the estimation to reflect the regional

differences. For example, high power costs in a particular geographical region may

ultimately lead to a higher CPU unit cost as power consumption of a server depends

on the CPU consumption.

3.5.3.2 I/O Cost

While I/O cost depend on the size of the relations that is expected to be used in

processing a query, I/O cost estimation is not directly attributed to the amount of

storage used by the fragments of these relations. Storage use on its own would not

be enough to estimate I/O usage because in case when a new replica is created, not

just one but all future queries would benefit from it.

Some queries are more data intensive than the others. These queries may require

a particular fragment to be read several times during an execution. Therefore, a

realistic storage cost calculation should not just consider the size of the fragments but

also consider the amount of disk read operations caused by accessing any particular

relation fragment.

CS =
∑

j

∑
e

∑
n

∑
l

sizeof(Rn,l)× ωje × sjenl (3.15)

sjenl =


1 if Rn,l is read from node Ne by Nj

0 otherwise
(3.16)

Simply, while all queries benefit from stored fragments and replicas, more storage
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cost should be incurred to the data-intensive queries accordingly. Therefore, an I/O

cost calculation (Equation 3.15) is performed in a similar manner as in the network

cost calculation. However, this time the unit cost of I/O (ωje) is used when accessing

a fragment on server Ne by requestor server Nj to consider any potential read or

write operations. Since the intermediate relations of pipelined operations are not

stored, they are not included in the storage cost. The indices of the unit cost is

used to indicate the heterogeneity of different cloud regions having different unit

cost values. A storage factor sjenl shows which particular replica is accessed among

the many possible replicas of the same fragment, as shown in Equation 3.16.

3.5.3.3 Network Cost

Query processing in distributed environments such as cloud systems, inevitably

causes some network resource to be consumed due to data transfer between servers.

The cost of data transfer is another cost item that the provider has to deal with

during query execution.

For a certain amount of data transfer, network cost inside a datacenter is con-

siderably cheaper than transferring data between geographical regions. Inside a

datacenter, network links are owned and operated by the cloud provider. On the

other hand, inter-region data transfer usually performed over the Internet, hence

yielding more cost. Furthermore, accessing different geographical regions from the

same requestor server likely to net different unit costs simply due to heterogeneous

bandwidth availability and pricing toward various regions. As a result, the unit cost

of network transfers (ν) is dependent on where the local Nj and remote Ne servers

are located in the cloud.

Since query Q may consist of many operators that may be executed on a num-
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ber of servers, a multitude of inter-server data transfers involving several remote

fragments (Rn,l) may take place. The factor bjenl is used to signify which particular

replica is accessed among the many possible replicas of Rn,l in the cloud. Equations

3.17 and 3.18 show the network cost and bjenl factor, respectively.

CB =
∑

j

∑
e

∑
n

∑
l

sizeof(Rn,l)× νje × bjenl (3.17)

bjenl =


1 if Rn,l migrated from node Ne to Nj

0 otherwise
(3.18)

3.5.3.4 Penalties

SLA terms mandate the provider to complete the execution of every query to satisfy

the service guarantees given to the tenant. While providers take necessary precau-

tions (e.g. data replication in our case) to prevent SLA breaches from happening, in

reality there may be some queries executed with response times greater than SLO

response time threshold. In these cases, the provider pays the tenants an agreed

upon sum of penalty, as described in the SLA (Wu et al., 2011; Sousa and Machado,

2012).

Penalty total is not the cost of a consumed resource associated with neither

data replication nor query execution. However, amount of penalties incurred to the

provider depends on the effectiveness of the data replication strategy. A good data

replication strategy should be able to enable query execution to meet the SLA and

as a consequence, reduce the penalties for the provider.
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CY =
∑

t

NUMQt × PQBt × ρ
PERt × ARt

(3.19)

Whether a query has respected SLA response time or not can be observed af-

ter the execution is completed. Therefore, the actual penalty cannot be reliably

determined by an estimation. Moreover, while the resources consumed by a partic-

ular tenant query is backed by the revenue generated by that particular query, the

penalties are paid to all tenants by the single provider. As Equation 3.19 shows, for

each tenant t, the amount of penalties inflicted per query in the next billing period

will depend on the total number of queries processed (NUMQt) and percentage of

them breaching the SLA (PBQt) and per-query unit penalty amount (ρ). Using

this formula, we include the increased cost of queries due to penalties paid by the

provider.

3.6 Conclusion

In chapter, we presented APER, a dynamic data replication strategy to satisfy both

the response time objective and economic benefit of the provider for processing

database queries in cloud systems. APER estimates the response time of database

queries before execution and predicts whether the response time objective is going

to be satisfied. If a query is estimated to violate the SLA, the proposed strategy

considers placing a new replica based on placement heuristic to carry on the execu-

tion with an acceptable response time. Of course, the processing of this query is still

required to be profitable with the new replica. An economical model predicts the

provider costs for executing that particular query and makes sure that profitability
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is ensured before the replication is carried out. For all query execution events, this

replication decision mechanism is evaluated to identify bottleneck data and replicate

them as necessary.

Response time estimation model in APER considers the consumption of the cloud

resources in left-deep, right-deep and bushy join query plans. Profit estimation is

based on the estimation of both the revenues and expenditures of the provider when

executing a tenant query. Based on predicted resource consumptions, we estimate

the monetary cost of executing each query while expected revenue is calculated from

the rent collected from the tenants.

The outputs of cost model and economic model of database query execution is

utilized in every aspect of the replication decisions. Once these two criteria are met

and data replication is being carried out, relevant fragments are replicated in an

incremental manner. Placement of these replicas are also handled in a cost-effective

manner that also satisfies the performance according to the placement heuristic.

Moreover, unnecessary replicas are retired from the system over time to further

improve the expenditures of the provider.



Chapter 4

Performance Evaluation

Abstract

In this chapter, the performance of APER, the proposed strategy is validated in an

experimental evaluation. Throughout the chapter, we first establish the testbed for

the performance evaluation. This includes selection and extension of a simulation

tool for the tests, preparation of the simulated cloud topology and the generation

of query load. Later, the performance of APER is studied in a comparative study

against another data replication strategy. The results are analyzed in a discussion

throughout the rest of the chapter.
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4.1 Introduction

Another crucial step on proposing a novel data replication strategy is to validate the

performance of the proposed strategy through experimental evaluation. Of course,

obtaining repeatable results has a key importance in the performance evaluation

study. Experimental evaluation of APER strategy can be summarized in two steps.

(i) Preparation of a testbed for evaluating the performance and (ii) actually per-

forming the experiments themselves.

First, a controlled test environment is established to represent a database man-

agement system in the cloud that will process a query load with predetermined

parameters. For this purpose, we tailored CloudSim (Calheiros et al., 2011) simula-

tion tool by customizing it to suit the need of our simulation scenarios. In CloudSim,



4.2. SIMULATION ENVIRONMENT 109

APER strategy is implemented as well as CDRM (Wei et al., 2010), another data

replication strategy. We employed these two strategies to be used in a compar-

ative analysis. The test bed contains all the necessary system requirements for

evaluating query performance with the presence of data replication. Moreover, the

testbed allows for measuring monetary costs of the provider resulting from resource

consumption.

In the second part of the performance evaluation, the results are obtained from

processing queries for a predetermined timespan. Of course, the necessary metrics

regarding the performance analysis is collected during the tests for both of the

evaluated data replication strategies. In this part, the aim is to highlight how APER

strategy excels in simultaneously satisfying both the performance and provider profit

objectives against the other strategy.

4.2 Simulation Environment

Cloud systems are volatile environments in terms of load and resource availabil-

ity. Especially when considering that many tenants share the same set of resources

through abstraction, it is possible to have continuously changing performance. This

situation may prevent us from performing controlled experiments (Zeng et al., 2016)

that is crucial for demonstrating the performance of the proposed strategy. Simply,

we need to be able to control all properties of the cloud environment to have re-

peatable results. This necessity pushes us towards using a simulation environment,

rather than a real cloud.

There are several aspects of the simulated environment that are important for

achieving a realistic model of the desired data management system operating in the
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cloud. Some noticeable issues dealt with in preparation of the simulation environ-

ment include the following. (i) Having a simulation tool that is capable of simulating

database query execution in the cloud with the presence of data replication. (ii) Cre-

ation of a simulated cloud topology that reflects a realistic cloud environment, e.g.

multiple geographical regions, heterogeneous resource availability etc. (iii) A query

load with coherent properties such as arrival rate and average number of joins. Of

course, these requirements of the simulation environment also necessitate careful

selection of all simulation parameters.

4.2.1 Cloud Simulator

Creating an entire cloud topology by renting resources from a cloud provider is a very

hard and expensive way of verifying the performance of any study. Furthermore,

this performance evaluation study requires us to assume the role of a cloud provider,

which is very likely to cause real cloud providers to hesitate donating this kind of

access privilege. In order to address these concerns of researchers, several cloud

simulators have been proposed in the literature (Ahmed and Sabyasachi, 2014).

These tools let researchers to accurately implement performance evaluation scenarios

without the burden and cost of dealing with an actual cloud environment.

All available cloud simulators focus on a key aspect of the cloud, hence designed

around that key property. For example, GreenCloud simulator is specifically focuses

on simulating energy consumption of datacenters. While other examples exist that

are interested in some other properties of the cloud systems, as of writing this thesis

manuscript, no particular cloud simulator specifically deal with data replication.

Among the available simulators, CloudSim (Calheiros et al., 2011) is noticeably

widely used in the literature. CloudSim is also an open source project, therefore
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it is possible to tailor the simulation tool with some extensions to better suit the

requirements of the performance evaluation study in this thesis.

In its standard form, CloudSim is targeted for resource provisioning in data-

centers in terms of allocating virtual machines on physical hosts. It allows for the

creation of simple tasks called cloudlets and models the execution of cloudlets on

virtual machines. In a typical usage scenario of CloudSim, number of virtual ma-

chines are scaled with respect to the load generated by processing cloudlets. Like

many other cloud simulators however, mechanisms for performing data replication

is not present in CloudSim. As a result, an extension in functionality of CloudSim

is necessary to enhance it with support for data replication; before realizing any

simulation scenarios involving the proposed strategy.

First, the cloudlet model of CloudSim is extended to have them better represent

database queries. Cloudlets are atomic tasks, independent from each other. This

model is extended to have dependencies between cloudlets, which is necessary since

processing a database query that may consist of operations with inter-dependencies.

Furthermore, the storage model is also extended to allow for virtual machines to have

their own storage, instead of CloudSims own storage model which uses a centralized

storage for each datacenter. Next, the necessary changes for measuring important

metrics is added to CloudSim. These include monetary cost of resources, which was

not measurable in the original form of CloudSim. Most importantly, data replication

support is added to CloudSim. With this extension, data replication can be triggered

before processing each query or at periodical intervals depending on the requirement

of the data replication strategy to be simulated. With these changes, CloudSim is

ready to be used for the performance evaluation purposes of this thesis.
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4.2.2 Simulated Cloud Topology

As cloud systems often offer services on a global-scale, we realized a cloud topol-

ogy that consist of 5 geographical regions. These geographical regions represent

continent-scale zones that contains datacenters. In turn, each region contains 3

datacenters, which host the actual computational resources. In each of these data-

centers, 10 servers are realized as virtual machines. These virtual machines possess

processing, storage and network capabilities to process the queries assigned to them.

The regions, datacenters and virtual machines are interconnected as shown in Fig-

ure 4.1.

In the simulations, we realized a hierarchical network bandwidth capability. As

the global hierarchy of the cloud goes from regions to towards smaller scales towards

the VMs, the network bandwidth is changed in parallel. The network infrastructure

is established in such a way that, the bandwidth capacity is more abundant and

cheaper at the lower levels of the hierarchy, i.e. inside the datacenters, but less

abundant and more expensive towards the higher levels, i.e. between geographical

regions.

In addition to network bandwidth, computational capabilities and storage ca-

pacities of virtual machines also vary from datacenter to datacenter to simulate a

heterogeneous cloud environment. This heterogeneity is not only limited to the ca-

pacities of these resources but also extended to their unit costs as well. In every

region, the provider costs of these resources are varied to achieve a more realistic

cloud system. Therefore, both the performance and cost of the CPU, I/O and net-

work resources depend on the virtual machines participate the processing of any

particular query. Each VM is equipped with computational resources (e.g. CPU,

storage etc.) essential to perform the execution of queries. During execution, VMs
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Figure 4.1: The cloud topology realized in the simulation.

can access the data sets in other VMs by remote reads or by replicating them to

local storage.

4.2.3 Simulated Query Load

After having a capable simulation tool equipped with a suitable simulation topology,

next item on the agenda is to generate the query plans that will serve as the load for

the cloud system. This query load is processed by the cloud. Some of these queries

may trigger data replication to satisfy the objectives of the studied data replication
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strategies.

We generated a query load of 10000 queries. On generation, each query plan is

determined to have a number of joins that vary between 1 to 5. The exact number

of join operations each query to have is randomly determined on generation to

create a computational variation between different queries. By dealing with different

number of joins and ultimately different computational loads caused by each query,

the simulation scenario is aimed to be more realistic. Of course, generated queries

requires a number of relations for processing depending on the number of joins. All

of the generated queries have a right-deep query plan to take advantage of parallel

execution in the cloud. These queries are randomly created and submitted to the

cloud during the simulation. For all simulation scenarios, same initial placement of

the fragments is used to ensure fair starting conditions.

Resource allocation during query processing is not a focus of this thesis, therefore

newly generated queries are accepted with their given query execution plan. This

execution plan is assumed to already have the target servers that are selected for

executing that particular query. In the simulations, when queries are submitted

to the cloud, they start processing in the same region they are submitted to, by

using servers that are most suitable with respect to their load and hosted fragments

in their storage. Queries are generated at random interval with an average arrival

rate and submitted to the cloud system. Generated queries require a number of

fragments that is dependent on their execution plan, e.g. number of joins. Moreover,

computational load generated by each query is also randomly changed from one

query to another to simulate the computational load variations between queries,

e.g. a simple projection versus an aggregate function.
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4.2.4 Simulation Parameters

In the simulations, we used a specific topology and query load as described in the

earlier sections. However, the simulation environment is further tailored with a

specific set of parameters that describe the other properties of the cloud. These

include, network bandwidth capacities, storage availability of the virtual machines,

unit cost of resources among many other system parameters. Table 4.1 shows these

specific set of system parameters used in the simulation scenarios.

The simulation parameters must be in accordance with the real cloud environ-

ments to realistically model query processing on a real cloud. Some of these param-

eters are relatively easier to model after real clouds, however others, especially the

unit cost of resources is difficult to obtain as they are usually treated as trade secrets

by the cloud providers to mask their profit margins. Therefore, we referred to the

existing studies (Barroso et al., 2013) on datacenter infrastructures to realistically

choose these system parameters to represent an accurate cloud environment.

Other system parameters such as the arrival rate of the queries are determined

empirically to properly demonstrate the operation of the evaluated strategies in

a meaningful manner. For example, a low arrival rate would result in a relaxed

system that is not strained by the query load. Such a scenario may not necessitate

or benefit from data replication. On the other hand, an extremely high query

load that is not possibly be handled by the existing capability of the cloud would

also not yield meaningful results from an opposing sense. Therefore, the selected

simulation parameters allows us to evaluate performance at the middle ground of

the two mentioned cases.



116 CHAPTER 4. PERFORMANCE EVALUATION

Table 4.1: Simulation parameters used in the performance evaluation.

Parameter Value
VM processing capability 1000 to 2000 MIPS
VM storage capacity 10 to 20 GB
Intra-datacenter bandwidth 8 to 12 Gbit/s
Intra-region bandwidth 2.75 to 3.25 Gbit/s
Inter-region bandwidth 0.15 to 0.25 Gbit/s
Avg. Intra-datacenter delay 5 to 10 ms
Avg. Intra-region delay 25 to 50 ms
Avg. Inter-region delay 100 to 150 ms
Response time SLO 120 s
Query arrival rate 16.67 query/s
Average load by query 1000 to 7500 MI
Number of relations 30
Avg. size of a relation 600 MB
Intra-datacenter bw cost $0.0005 per GB
Intra-region bw cost $0.002 per GB
Inter-region bw cost $0.04 per GB
I/O cost $0.05 to 0.15 per TB
Processing cost $2 to $4 per 109 MI
Penalty cost $0.5 per 1000 violation
Revenue $0.5 per 1000 query
ThnumRep 3

4.2.5 Comparison of Data Replication Strategies

APER strategy brings cost-effective satisfaction of query response times as a novel

contribution to large-scale data management in the cloud. However, highlighting

the impact of this novelty is better conveyed through a comparative performance

evaluation study against a more traditional data replication strategy. Hence, we

compared the performance of APER with CDRM (Wei et al., 2010), another data

replication strategy proposed for cloud systems.

Main focus of CDRM is maintaining a minimum number of replicas to satisfy

a given level of availability. It calculates a minimum number of replicas to sat-
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isfy a given level of availability and it further increases the number of replicas if

necessary according to a proposed metric called blocking probability. The authors

propose a queuing model that takes into account the arrival rate and service rate for

each server. According to this model, CDRM aims to reduce the impact of access

skew, hence improving balanced load. New replicas are placed according to blocking

probability to ensure the continuity of a balanced load throughout the cloud.

CDRM promises improved performance, however it does not take the economic

aspect of data replication into account. While it achieves availability and balanced

load, CDRM does not consider SLA satisfaction. Because of these properties CDRM

is a very suitable candidate for comparing APER to show how the economic impact

of SLA-aware data replication affect the profitability of the provider.

4.3 Simulation Results

The simulation study is conducted by evaluating the generated query load on the

established cloud topology for the duration of time that is described in the simu-

lation parameters. During the simulations, several metrics are collected for further

analysis. In the following subsections, some discussion on the collected metrics are

given to highlight how the two studied data replication strategies handle the query

load by performing replication.

4.3.1 Measured Metrics

The performance of both APER and CDRM is analyzed over some key metrics mea-

sured during the simulations. While simulation scenarios are executed by CloudSim,

several system parameters are logged to be further discussed in their respective sub-
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sections. These logs are then processed at the end of the simulation to obtain values

of the desired metrics. These include, average response time of the queries, total

number of replication events, used storage percentage of the entire cloud as well as

I/O consumption, network bandwidth consumption and finally the number of SLA

violations. Table 4.2 shows the measured values of these metrics.

Table 4.2: Simulation results.

Replication strategy APER CDRM
Average response time (s) 64.7 351.7
Number of replications 908 796
Storage use (%) 22 14
Inter-region transfer (GB) 27.50 335.53
Intra-region transfer (GB) 301.05 149.71
Intra-datacenter transfer (GB) 302.25 147.07
Number of SLA violations 533 5005

What these metrics signify regarding the performance of the evaluated data

replication strategies is discussed in the following subsections.

4.3.2 Average Response Time

Average response time metric indicates, on average, how long it takes for a query to

produce a response starting from its submission. As the tenant’s expectation from

the provider is the satisfaction of the performance objective, average response time

is key in demonstrating whether the evaluated strategies performed acceptably.

APER satisfied the response time with respect to the threshold set in the SLA.

There are some queries that produced a response with a less-than ideal response

times during the initial replica reconfiguration. However, after the starting period

where replicas are starting to be distributed across the cloud, APER yielded ac-
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Figure 4.2: Response time of the queries during simulation.

ceptable response times throughout the simulation, as shown in Figure 4.2. Low

data access times as a result of good replica placement by APER is a key factor in

this result. Since balanced load does not necessarily guarantee the satisfaction of

performance, CDRM provided a higher average response time compared to the SLA

threshold.

4.3.3 Number of Replications

During the simulation, both strategies performed relatively similar number of repli-

cations. The marginal difference is resulted from the replication decision criteria

of the two strategies. In other words, APER replicated data more often than the

CDRM, in order to satisfy the response time SLO. On the other hand, CDRM did
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not continue to create more replicas to satisfy the response time once the balanced

load is achieved. The difference is further evidenced by the fact that, APER consid-

ers cost-effective satisfaction of response time for triggering replication while CDRM

only considers access frequencies of fragments.

In an example case where a query requires an unpopular but large data, APER

may perform replication if necessary due to a predicted SLA breach. On the other

hand, CDRM would not replicate it even though long data transfer time would

violate the SLA since unpopular data is uninteresting for CDRM. Both strategies

pursue different objectives it may be possible that the satisfaction of performance

necessitate more replications to be triggered compared to the satisfaction of balanced

load in this specific simulation scenario.

4.3.4 Storage Usage

APER used 8% more amount of storage space compared to CDRM.While this affects

the expenditures of the provider, there is a certain trade-off behind this decision. On

replication decisions, APER evaluates which decision is more economically feasible

for the provider, doing a remote read or replicating the data to a more suitable

location. In the simulation scenarios, apparently performing data replication is

more economical for the provider compared to remote reads in a larger percentage

of time.

APER followed this route in order to avoid (i) high utilization of expensive

network links and (ii) avoiding penalties by taking advantage of having more replicas

to satisfy the response time. Of course, APER would not create these replicas if

they were not profitable for the provider to have them. Lower number of replicas of

CDRM can be attributed to the core decision mechanism of the strategy. In these
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simulation scenarios, evidently, it takes less number of replicas to ensure availability

and balanced load compared to satisfying response time objective. This is further

apparent in the number of SLA breaches for the two strategies.

4.3.5 Network Usage

Network usage highly impact the costs of the provider and also data transfer times, as

the network links vary both in pricing and throughput depending on the type of the

link, e.g. intra-datacenter network area. In this sense, APER performed a majority

of data transfers inside regions and datacenters, as shown in Figure 4.3. This is not

a coincidence. APER often chose to replicate data residing in remote geographical

locations to more locally available servers, preferably in the same datacenters as the

requestors are located.

 0

 100

 200

 300

 400

 500

 600

 700

 800

APER CDRM

D
at

a 
tr

an
sf

er
 o

v
er

 n
et

w
o

rk
 (

G
B

)

Intra-datacenter
Intra-region
Inter-region
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More frequent utilization of cheaper network links is also decreases expenditures,

as APER avoids using expensive and slow inter-region links by placing replicas

on servers that are cheaply accessed with good bandwidth. CDRM does not take

into account the network hierarchy among servers during data placement. Instead,

it performs server selection for placing new replicas according to the workload of

candidate servers. As a result, there are many cases where a target server with

a suitable properties for replica placement to be found in a remote datacenter or

region. A drawback CDRM is high utilization of expensive and slower inter-region

network links.

4.3.6 Number of SLA Violations

The number of SLA violations is the ultimate verdict of replication decisions on

their effectiveness during the simulation period. If a strategy performs data replica-

tion in accordance with satisfying the SLA, the number of breaches should ideally

be zero. However, initially the fragments are scattered across the cloud topology.

Inevitably, during a small period at the beginning of the simulations, some viola-

tions are observed simply due to replica reconfiguration to respond query arrival

rate. Therefore, a more realistic view of the number of breaches is to keep them at

a minimum after the initial replica reconfiguration.

APER caused significantly less number of SLA breaches compared to CDRM

during the simulation. As can be seen in the discussion of the average response time

metric, some SLA violations (Table 4.2) occurred with the proposed strategy at the

initial replica configuration phase. However, CDRM caused a significant number

of SLA breaches as a result of the high average response time. Minimizing the

number of SLA breaches is the most important measure to take in order to avoid



4.3. SIMULATION RESULTS 123

high penalty expenditures for the provider.

4.3.7 Monetary Expenditures of the Provider

During the simulations, cloud resources are consumed, or rather occupied for pro-

cessing the computational load generated by tenant queries.
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Figure 4.4: Total costs of the provider during the simulation.

The expenditures are calculated with respect to the resource consumption and

their unit costs as described in the simulation parameters. Since penalty cost is not

an expenditure generated by the consumption of a resource, it is calculated by using

the number of SLA breaches during the simulation. Figure 4.4 shows the monetary

costs of the cloud resources corresponding to their consumptions during the simula-

tion. Apart from penalty and network costs, both strategies yielded similar resource
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costs. Lower-than-threshold average response time and minimal SLA violations en-

abled APER to cause less expenditures for the provider in terms of penalties paid to

the tenants. Furthermore, having enough replicas in strategic places allowed APER

to accumulate cost savings by avoiding high utilization of the expensive network

links.

4.4 Conclusion

There are several takeaways emerged from the results of the simulation study. While

a data replication strategy is essential to satisfy performance guarantees, simply us-

ing a traditional strategy is not enough for the cloud provider to ensure economic

benefit. Traditional strategies tend to eagerly replicate to attain best possible perfor-

mance. However, in pursuit of the best performance, traditional strategies increase

provider costs. Consequently, as long as the performance objective is satisfied, it is

important to focus on improving the economic benefit of the provider.

Focusing on one aspect of the cloud may also result in some undesirable outcome

for other aspects. An example for this phenomenon is observed in the simulations.

While CDRM focuses on satisfying availability and load balancing, economic impact

of the replication is not taken into account. The disregard of economic impact of

replication on provider profitability resulted in an unacceptable outcome for the

provider.

Furthermore, it can be said that, balanced load does not always necessarily sat-

isfy the performance objective. APER successfully satisfied both the response time

guarantee and the provider profitability by establishing a good trade-off between

them. APER does not pursue best performance in a wasteful way that would ex-
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haust the cloud resources. Instead, it aims to keep the performance at an acceptable

threshold level to leave a healthy profit margin for the provider. In light of the per-

formance evaluation, we believe that, simultaneous satisfaction of SLA and economic

benefit should be the key ingredient in any data replication strategy operating in

the cloud.
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Chapter 5

Conclusion and Future Work

Abstract

This chapter concludes the thesis manuscript with a summary of the studies con-

ducted during the research period and contributions made. The novel aspects of the

proposed data replication strategy is revisited with discussing on its benefits and

shortcomings. Furthermore, some future directions that may inspire researchers who

are interested in doing research in this area are discussed.

Contents
5.1 Summary of Studies . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 130

127



128 CHAPTER 5. CONCLUSION AND FUTURE WORK

5.1 Summary of Studies

Cloud computing is a computing paradigm that has been growing into popularity in

more than a decade. Cloud providers rent the abstracted resources to the tenants in

a economy-based model, which allows the tenants to be billed just for their share of

resource usage. Moreover, elastic scaling of the resources makes it possible to quickly

scale the cloud services to respond demand changes without interruption. In return

for their money, tenants expect a certain level of performance from the providers.

On the other hand, providers aim to minimize their expenditures to maximize their

profit.

Data replication has been around for many decades to assist in achieving goals

such as increased performance, improved availability and introducing fault-tolerance.

Data replication deals with identification of what data needs replication, when to

perform the task of replication, decide on the degree on replication, where to place

the created replicas and finally retirement of the unnecessary replicas from the sys-

tem. Of course, while pursuing for performance benefit through data replication,

it is important to do it in a cost-effective way especially in economy-based systems

such as clouds.

In this thesis we presented APER, a dynamic data replication strategy to satisfy

both the response time of database queries and provider’s economic benefit in the

cloud. APER estimates the response time of database queries before the execution

takes place and predicts whether the response time objective is going to be satis-

fied. If a query is estimated to violate the SLA due to the potential of producing

a response time greater than the promised threshold to the tenant, the proposed

strategy considers creating new replicas to resolve the performance problem. How-

ever, the query still needs to be estimated as profitable for the provider before the
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replication is triggered. Therefore, both the performance objective and provider

profitability criterion must be simultaneously satisfied in order to replicate data.

When data replication takes place, only the fragments that are expected to

cause a bottleneck are selected for replication. There fragments are incrementally

replicated to more suitable locations in the cloud. The placement of replicas is

based on a placement heuristic, which finds candidate servers that are able to satisfy

performance objective in a cost-effective manner. All of these replication decisions

are made in such a way that reduces the resource consumption in the cloud to reduce

the expenditures of the provider.

Regarding the cost model and economic model used in the replication decisions,

former is responsible for estimating the response time of database queries. Response

time estimation model in APER considers the consumption of the cloud resources

in left-deep, right-deep and bushy join query plans. Latter model is focused on

the profit estimation for the provider and it is based on the estimation of both the

revenues and expenditures of the provider when executing a tenant query. Based on

predicted resource consumptions, APER estimates the monetary cost of executing

each query while expected revenue is calculated from the rent collected from the

tenants.

We analyzed the performance of APER alongside CDRM (Wei et al., 2010),

which is another data replication strategy proposed for cloud systems. The perfor-

mance evaluation processed a large number of queries on a simulated cloud topology.

The query load consist of different number of joins for each query and cloud topology

is established to reflect a heterogeneous cloud environment to represent a realistic

scenario. Results indicate that, APER satisfied performance and returned a profit

for the provider by strategically placing replicas to simultaneously achieve improved



130 CHAPTER 5. CONCLUSION AND FUTURE WORK

data access time and reduced resource consumption. On the other hand, CDRM

resulted in high network and penalty costs due to not considering network hierarchy

in data placement and high number of SLA breaches.

5.2 Future Directions

After having done in-depth research on data replication in large-scale data man-

agement systems, some new research directions or bifurcation possibilities from the

research presented in this thesis have emerged. Below, we discuss some of those

future work in our research area.

(i) Proposing a more efficient penalty management. On satisfaction of SLA, the

ultimate measure of to what extent the tenant’s expectations are satisfied by

the provider is the penalty mechanism. If the provider manages to keep tenants

happy by satisfying SLA, no penalty is incurred on the provider. Otherwise,

some amount of penalty is paid by the provider to the tenant, with the amount

depending on the degree of SLA violation. In APER, we ensure the satisfac-

tion of SLA by estimating the response time of the the queries and make them

meet threshold performance through data replication. Another possible way

of achieving this result is by estimating the penalty amount due to execution

of some query. This way, SLA satisfaction would still be satisfied and penalty

management would become an objective of the data replication strategy, in-

stead of a consequence. Of course, penalty minimization should also be done

in a cost-effective way for the profitability of the provider.

(ii) APER makes the replication decisions before the execution of every single

query that arrives at the cloud. One significant advantage of this approach is
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to immediately respond to any changing trend in query load and popularity.

However, one could argue that experiencing the overhead of data replication

at every single query may be a high price to pay for the luxury of quickly

responding to change. The alternative is to perform a periodical replication,

instead of considering it at every query. In periodical replication, historical

data for which queries are popular and which fragments are accessed more

frequently is collected. Afterwards, this information can be used at periodical

intervals to perform a global optimization for reconfiguring replicas. This

approach may respond to changing trends more slowly than APER, but it can

also be cheaper in terms of overhead. A good research opportunity is available

here to compare both approaches and study which one is more suitable for

what particular scenario.

(iii) Current economic model deals with the issue of multi-tenancy from the per-

spective of a single tenant. With a simplistic assumption of the provider having

the same set of performance guarantees for each of its tenants, APER is ca-

pable of handling a multi-tenant cloud environment. However, each tenant

having its own set of requirements from the provider complicates the matters.

In this case, an extension to the economic model to take into account the

heterogeneity among service level agreements with multiple tenants is neces-

sary. This direction is worth pursuing and can open new research possibilities.

Considering that queries that belong to a multitude of tenants are processed

by the same set of resources, fairness of the provider towards each tenant with

different levels of performance guarantees and other service level objectives

would also pose interesting challenges to tackle.
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(iv) Some other future research opportunities can also be pursued to evaluate the

performance of the proposed strategy in various other simulation scenarios. A

few example issues that may be worth researching on this matter are listed

below.

(a) Performance evaluation study can be taken afar by creating some varia-

tion in certain simulation parameters. An way to accomplish this would

be to impose different response time threshold values to be used for trig-

gering data replication. This can also be conjoined with the multi-tenancy

point made above, with some tenants requiring stricter response time

guarantees while others may be more relaxed with their performance de-

mand from the provider.

(b) Some variation can also be introduced in the workload generation routines

used in the simulation. Currently, query load is randomly generated in

terms of computational intensiveness and their arrival intervals at the

cloud system. A more in-depth performance analysis can be done by

extending the workload generation to invoke some intentional workload

spikes to simulate a query load that resembles real-world system loads

more closely.

(c) In the current simulation setup, the query load is generated with a ran-

domly determined number of joins in order to create a load variation

between each query. Another possible way to achieve this would be using

a standard, well known batch of queries, more specifically TPC-H queries

(Barata et al., 2015). Also it would be interesting to see the impact of

query complexity (in terms of number of joins) on the response time ob-

jective. One example evaluation may consider modeling simple queries
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with 1 join, medium queries with 3 joins and complex queries with 7 joins.

(d) Finally, the simulation topology can be expanded to have a larger number

of VMs to better represent a realistic cloud environment. However, it

should be noted that it would require a powerful hardware to accomplish

as CloudSim gets increasingly resource-hungry as the number of simulated

cloud topology gets larger.
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Data replication in large-scale data management systems

In recent years, growing popularity of large-scale applications, e.g. scientific experiments, Internet of things and
social networking, led to generation of large volumes of data. The management of this data presents a significant
challenge as the data is heterogeneous and distributed on a large scale.

In traditional systems including distributed and parallel systems, peer-to-peer systems and grid systems, meeting
objectives such as achieving acceptable performance while ensuring good availability of data are major challenges
for service providers, especially when the data is distributed around the world. In this context, data replication,
as a well-known technique, allows: (i) increased data availability, (ii) reduced data access costs, and (iii) improved
fault-tolerance. However, replicating data on all nodes is an unrealistic solution as it generates significant bandwidth
consumption in addition to exhausting limited storage space. Defining good replication strategies is a solution to these
problems.

The data replication strategies that have been proposed for the traditional systems mentioned above are intended
to improve performance for the user. They are difficult to adapt to cloud systems. Indeed, cloud providers aim to
generate a profit in addition to meeting tenant requirements. Meeting the performance expectations of the tenants
without sacrificing the provider’s profit, as well as managing resource elasticities with a pay-as-you-go pricing model,
are the fundamentals of cloud systems.

In this thesis, we propose a data replication strategy that satisfies the requirements of the tenant, such as perfor-
mance, while guaranteeing the economic profit of the provider. Based on a cost model, we estimate the response time
required to execute a distributed database query. Data replication is only considered if, for any query, the estimated
response time exceeds a threshold previously set in the contract between the provider and the tenant. Then, the
planned replication must also be economically beneficial to the provider. In this context, we propose an economic
model that takes into account both the expenditures and the revenues of the provider during the execution of any
particular database query. Once the data replication is decided to go through, a heuristic placement approach is used
to find the placement for new replicas in order to reduce the access time. In addition, a dynamic adjustment of the
number of replicas is adopted to allow elastic management of resources.

Proposed strategy is validated in an experimental evaluation carried out in a simulation environment. Compared
with another data replication strategy proposed in the cloud systems, the analysis of the obtained results shows that
the two compared strategies respond to the performance objective for the tenant. Nevertheless, a replica of data is
created, with our strategy, only if this replication is profitable for the provider.

Keywords: Cloud Computing, Database Queries, Data Replication, Performance Evaluation, Economic Benefit

Réplication de données dans les systèmes de gestion de données à grande échelle

Ces dernières années, la popularité croissante des applications, e.g. les expériences scientifiques, Internet des objets
et les réseaux sociaux, a conduit à la génération de gros volumes de données. La gestion de telles données qui de plus,
sont hétérogenes et distribuées à grande échelle, constitue un défi important.

Dans les systèmes traditionnels tels que les systèmes distribués et parallèles, les systèmes pair-à-pair et les sys-
tèmes de grille, répondre à des objectifs tels que l’obtention de performances acceptables tout en garantissant une
bonne disponibilité de données constituent des objectifs majeurs pour l’utilisateur, en particulier lorsque ces données
sont réparties à travers le monde. Dans ce contexte, la réplication de données, une technique très connue, permet
notamment: (i) d’augmenter la disponibilité de données, (ii) de réduire les coûts d’accès aux données et (iii) d’assurer
une meilleure tolérance aux pannes. Néanmoins, répliquer les données sur tous les nœuds est une solution non réaliste
vu qu’elle génère une consommation importante de la bande passante en plus de l’espace limité de stockage. Définir
des stratégies de réplication constitue la solution à apporter à ces problématiques.

Les stratégies de réplication de données qui ont été proposées pour les systèmes traditionnels cités précédemment
ont pour objectif l’amélioration des performances pour l’utilisateur. Elles sont difficiles à adapter dans les systèmes
de cloud. En effet, le fournisseur de cloud a pour but de générer un profit en plus de répondre aux exigences des
locataires. Satisfaire les attentes de ces locataire en matière de performances sans sacrifier le profit du fournisseur
d’un coté et la gestion élastiques des ressources avec une tarification suivant le modèle ’pay-as-you-go’ d’un autre coté,
constituent des principes fondamentaux dans les systèmes cloud.

Dans cette thèse, nous proposons une stratégie de réplication de données pour satisfaire les exigences du locataire,
e.g. les performances, tout en garantissant le profit économique du fournisseur. En se basant sur un modèle de coût,
nous estimons le temps de réponse nécessaire pour l’exécution d’une requête distribuée. La réplication de données
n’est envisagée que si le temps de réponse estimé dépasse un seuil fixé auparavant dans le contrat établi entre le
fournisseur et le client. Ensuite, cette réplication doit être profitable du point de vue économique pour le fournisseur.
Dans ce contexte, nous proposons un modèle économique prenant en compte aussi bien les dépenses et les revenus du
fournisseur lors de l’exécution de cette requête. Nous proposons une heuristique pour le placement des répliques afin
de réduire les temps d’accès à ces nouvelles répliques. De plus, un ajustement du nombre de répliques est adopté afin
de permettre une gestion élastique des ressources.

Nous validons la stratégie proposée par une évaluation basée sur une simulation. Nous comparons les performances
de notre stratégie à celles d’une autre stratégie de réplication proposée dans les clouds. L’analyse des résultats obtenus
a montré que les deux stratégies comparées répondent à l’objectif de performances pour le locataire. Néanmoins, une
réplique de données n’est crée, avec notre stratégie, que si cette réplication est profitable pour le fournisseur.

Mots-clés: Systèmes cloud, requêtes de base de données, réplication de données, évaluation de performances, profit
économique


