B. Petroleum, BP statistical review of world energy. London : British Petroleum, 2017.

I. S. Fraunhofer, Photovoltaics report. Fraunhofer ISE, vol.13, p.15, 2017.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. ,

. Dunlop, Progress in Photovoltaics : Research and Applications, vol.24, p.111, 1990.

W. Shockley and H. J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells, Journal of applied physics, vol.32, issue.3, pp.510-519, 1961.

H. Mathieu and H. Fanet, Physique des semiconducteurs et des composants électroniques, Dunod Paris, vol.5, issue.6, p.79, 2001.

, Conversion photovoltaïque : du rayonnement solaire à la cellule

A. Labouret and M. Villoz, Energie solaire photovoltaïque-4ème édition. Dunod, Google-Books-ID : PtaPEVAC9bgC, vol.9, p.11, 2009.

A. Labouret and M. Villoz, Installations photovoltaïques-5e éd, Conception et dimensionnement d'installations raccordées au réseau. Dunod, p.11, 2012.

, Les différents types de cellules photovoltaiques-Médiaterre, vol.14

. Photovoltaïque and . Info, Centre de ressources sur les panneaux solaires et la production d'électricité Les technologies de cellules solaires photovoltaïques, p.15

J. Woon-seok-yang, N. J. Hong-noh, Y. C. Jeon, S. Kim, and . Ryu, Jangwon Seo, and Sang Il Seok. High performance photovoltaic perovskite BIBLIOGRAPHIE layers fabricated through intramolecular exchange, Science, vol.348, issue.6240, p.16, 2015.

, Le tour du monde en avion solaire. Le Figaro, vol.18, 2007.

A. Japon and . Le-succès-d'une-pme-lilloise-dans-le-solaire-flottant, , vol.18, 2015.

. Normandie, La première route solaire de France voit le jour, vol.18, 2016.

. Snooz and . Heli, On : un chargeur solaire pour smartphone, à enrouler dans la poche, p.18, 2015.

S. Pereira, M. R. Correia, E. Pereira, K. P. O'donnell, E. Alves et al., Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping, Applied physics letters, vol.80, issue.21, p.123, 2002.

F. Shi, GaN Nanowires Fabricated by Magnetron Sputtering Deposition, 1920.

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu et al., Wittmer, and others. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face

. Algan and . Gan, Journal of applied physics, vol.85, issue.6, p.20, 1999.

F. Bernardini and V. Fiorentini, Nonlinear behavior of spontaneous and piezoelectric polarization in III-V nitride alloys. physica status solidi(a), vol.190, p.22, 2002.

I. Vurgaftman and J. R. Meyer, Band parameters for nitrogen-containing semiconductors, Journal of Applied Physics, vol.94, issue.6, pp.3675-3696, 2003.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides, Physical Review B, vol.56, issue.16, p.22, 1997.

J. Piprek, Semiconductor Optoelectronic Devices : Introduction to Physics and Simulation, vol.23, p.48, 2013.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-mohan, Band parameters for III-V compound semiconductors and their alloys, Journal of applied physics, vol.89, issue.11, pp.5815-5875, 2001.

M. Anani, H. Abid, Z. Chama, C. Mathieu, A. Sayede et al., InGaN refractive index calculations, Microelectronics Journal, vol.38, issue.2, pp.262-266, 1924.

M. Hori, K. Kano, T. Yamaguchi, Y. Saito, T. Araki et al., Optical Properties of InGaN with Entire Alloy Composition on InN Buffer Layer Grown by RF MBE. physica status solidi (b), vol.234, p.25, 2002.

J. Wu, When group-III nitrides go infrared : New properties and perspectives, Journal of Applied Physics, vol.106, issue.1, p.32, 2009.

. Gf-brown, I. Ager, J. Walukiewicz, and . Wu, Finite element simulations of compositionally graded InGaN solar cells, Solar Energy Materials and Solar Cells, vol.94, issue.3, p.79, 2010.

J. Wu and W. Walukiewicz, Band gaps of InN and group III nitride alloys, Superlattices and Microstructures, vol.34, p.55, 2003.

G. Franssen, I. Gorczyca, T. Suski, A. Kamí-nska, J. Pereiro et al.,

A. Georgakilas, S. B. Che, Y. Ishitani, and O. , Bowing of the band gap pressure coefficient in InGaN alloys, Journal of Applied Physics, vol.103, issue.3, p.52, 2008.

N. Richet, Google-Books-ID : mqOyDgAAQBAJ, Les cellules photovoltaïques en silicium : théorie et fabrication. EDP Sciences, vol.27, p.52, 2017.

J. Coutaz, Google-Books-ID : ZvAaiQOUi5gC, vol.27, p.52, 2012.

A. M. Fischer, Y. O. Wei, F. A. Ponce, M. Moseley, B. Gunning et al., Highly luminescent, high-indium-content InGaN film with uniform composition and full misfit-strain relaxation, Applied Physics Letters, vol.103, issue.13, p.96, 2013.

A. M. Chloe, B. P. Fabien, W. A. Gunning, A. M. Doolittle, and Y. O. Fischer,

H. Wei, F. A. Xie, and . Ponce, Low-temperature growth of InGaN films BIBLIOGRAPHIE over the entire composition range by MBE, Journal of Crystal Growth, vol.425, p.96, 1928.

E. Feltin, Hétéro-épitaxie de Nitrure de Gallium sur substrat de silicium (111) et applications, 2003.

P. Aseev, E. D. Paul, . Soto-rodriguez, J. Víctor, H. Gómez et al., Near-infrared emitting In-rich InGaN layers grown directly on Si : Towards the whole composition range, Applied Physics Letters, vol.106, issue.7, p.29, 2000.

V. Gorge, Caractérisations de matériaux et tests de composants des cellules solaires à base des nitrures des éléments III-V. phdthesis, 1929.

Y. E. Gmili, Étude et caractérisations par cathodoluminescence de couches minces d'InGaN pour le photovoltaïque, 1929.

J. Duboz, Matériaux semi-conducteurs à grand gap III-V à base de GaN, p.29, 1999.

K. Kim, R. L. Walter, B. Lambrecht, and . Segall, Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN, Physical Review B, vol.53, issue.24, p.29, 1996.

J. W. Matthews and A. E. Blakeslee, Defects in epitaxial multilayers : I. Misfit dislocations, Journal of Crystal Growth, vol.27, p.30, 1974.

R. People and J. C. Bean, Calculation of critical layer thickness versus lattice mismatch for GeSi/Si strained-layer heterostructures, Applied Physics Letters, vol.47, issue.3, pp.322-324, 1985.

A. Fischer, H. Kühne, and H. Richter, New approach in equilibrium theory for strained layer relaxation, Physical review letters, vol.73, issue.20, p.126, 1994.

D. Holec, M. J. Costa, C. J. Kappers, and . Humphreys, Critical thickness calculations for InGaN/GaN, Journal of Crystal Growth, vol.303, issue.1, p.30, 2007.

. Bibliographie,

L. L. Fong-kwong-yam, S. A. Low, Z. Oh, and . Hassan, Gallium nitride : an overview of structural defects, Optoelectronics-Materials and Techniques, vol.30, p.128, 2011.

J. L. Lyons and C. G. Van-de-walle, Computationally predicted energies and properties of defects in GaN, NPJ Computational Materials, vol.3, issue.1, p.133, 2017.

A. Janotti, J. L. Lyons, and C. G. Van-de-walle, Hybrid functional calculations of native point defects in InN. physica status solidi (a), vol.209, p.32, 2012.

Z. Feng-qi, S. Jun-jie, and Y. Mao, First-Principles Study on Native Defect Complexes in InN, Communications in Theoretical Physics, vol.53, issue.1, p.30, 2010.

S. K. Mathis, A. E. Romanov, L. F. Chen, G. E. Beltz, W. Pompe et al., Modeling of threading dislocation reduction in growing GaN layers, Journal of Crystal Growth, vol.231, issue.3, p.31, 2001.

P. Visconti, K. Jones, M. Reshchikov, R. Cingolani, H. Morkoç et al., Dislocation density in GaN determined by photoelectrochemical and hot-wet etching, Applied Physics Letters, p.31, 2000.

P. G. Eliseev, P. Perlin, J. Lee, and M. Osí-nski, Blue" temperatureinduced shift and band-tail emission in InGaN-based light sources, Applied physics letters, vol.71, issue.5, p.31, 1997.

B. N. Pantha, H. Wang, N. Khan, J. Y. Lin, and H. X. Jiang, Origin of background electron concentration in In x Ga 1-x N alloys, Physical Review B, vol.84, issue.7, p.90, 2011.

A. Mark, T. L. Hoffbauer, J. J. Williamson, J. L. Williams, K. M. Fordham et al., In-rich InGaN thin films : Progress on growth, compositional uniformity, and doping for device applications, Nanotechnology and Microelectronics : Materials, Processing, Measurement, and Phenomena, vol.31, issue.3, p.90, 2013.

. Bibliographie,

A. Y?ld?z, Ö. M. Kemal, M. Bosi, S. Özçelik, and M. Kasap, Structural, electrical and optical characterization of InGaN layers grown by MOVPE, Chinese Physics B, vol.18, issue.9, p.32, 2009.

P. Perlin, Towards the Identification of the Dominant Donor in GaN, p.32, 1995.

C. Stampfl, C. G. Van-de-walle, D. Vogel, P. Krüger, and J. Pollmann, Native defects and impurities in InN : First-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials, Physical Review B, vol.61, issue.12, p.32, 2000.

S. Hautakangas, J. Oila, M. Alatalo, K. Saarinen, L. Liszkay et al., Gislason. Vacancy defects as compensating centers in Mg-doped GaN, Physical review letters, vol.90, issue.13, p.33, 2003.

A. Philippe, Caractérisation électrique et optique du nitrure de gallium hexagonal et cubique en vue de l'obtention d'émetteurs bleus, p.33, 1999.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, Design and characterization of GaN/InGaN solar cells, Applied Physics Letters, vol.91, issue.13, p.39, 2007.

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. Denbaars et al., High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap, Applied Physics Letters, vol.93, issue.14, p.39, 2008.

H. Çakmak, M. Engin-arslan, P. Rudzí-nski, H. E. Demirel, W. Unalan et al.,

R. Turan, M. Öztürk, and E. Özbay, Indium rich InGaN solar cells grown by MOCVD, Journal of Materials Science : Materials in Electronics, vol.25, issue.8, p.39, 2014.

A. Asgari and K. Khalili, Temperature dependence of InGaN/GaN multiple quantum well based high efficiency solar cell, Solar Energy Materials and Solar Cells, vol.95, issue.11, p.39, 2011.

Z. W. Zheng, M. H. Lai, L. Y. Ying, and B. P. Zhang, High-efficiency vertical-type InGaN/GaN multiple quantum well solar cells using aluminum reflectors, 2016 IEEE 16th International Conference on Nanotechnology, vol.35, p.39, 2016.

. Bibliographie,

S. Liu, Q. Wang, H. Xiao, K. Wang, C. Wang et al., Optimization of growth and fabrication techniques to enhance the InGaN/GaN multiple quantum well solar cells performance. Superlattices and Microstructures, vol.109, p.136, 2017.

S. W. Zeng, B. P. Zhang, J. W. Sun, J. F. Cai, C. Chen et al., Substantial photoresponse of InGaN p-i-n homojunction solar cells, Semiconductor Science and Technology, vol.24, issue.5, p.39, 2009.

M. R. Md-rafiqul-islam, . Kaysir, A. Islam, A. Hashimoto, and . Yamamoto, MOVPE Growth of InGa N and Fabrication of Homo-junction Solar Cells, Journal of Materials Science & Technology, vol.29, issue.2, p.39, 2013.

A. M. Chloe, W. A. Fabien, and . Doolittle, Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells, Solar Energy Materials and Solar Cells, vol.130, p.79, 1937.

X. Zhang, X. Wang, H. Xiao, C. Yang, J. Ran et al., Theoretical design and performance of InGaN two-junction solar cells, Journal of Physics D : Applied Physics, vol.41, issue.24, p.122, 2008.

. Young, High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration, Applied Physics Letters, vol.104, issue.16, p.136, 1938.

. Hsu, Modeling of InGaN/Si tandem solar cells, Journal of Applied Physics, vol.104, issue.2, p.39, 2008.

X. Jun-jun, C. Dun-jun, L. Bin, X. Zi-li, J. Ruo-lian et al.,

, Chinese Physics Letters, vol.26, issue.9, p.39, 2009.

R. Dahal, J. Li, K. Aryal, J. Y. Lin, and H. X. Jiang, InGaN/GaN multiple quantum well concentrator solar cells, Applied Physics Letters, vol.97, issue.7, p.104, 2010.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-heji et al., Umesh Mishra, and others. High BIBLIOGRAPHIE internal and external quantum efficiency InGaN/GaN solar cells, Applied Physics Letters, vol.98, issue.2, p.39, 2011.

C. Yang, C. H. Jang, J. Sheu, M. Lee, S. Tu et al., Characteristics of InGaN-based concentrator solar cells operating under 150x solar concentration, Optics express, vol.19, issue.104, p.39, 2011.

X. Cai, S. Zeng, and B. Zhang, Favourable photovoltaic effects in InGaN pin homojunction solar cell, Electronics letters, vol.45, issue.24, p.39, 2009.

J. Nelson, The physics of solar cells, vol.44, p.45, 2003.

G. J. Hagelaar and L. C. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sources Science and Technology, vol.14, issue.4, p.722, 2005.

S. Fonash, Solar cell device physics, p.44, 2012.

W. B. Joyce and R. W. Dixon, Analytic approximations for the Fermi energy of an ideal Fermi gas, Applied Physics Letters, vol.31, issue.5, p.45, 1977.

W. Dutton and Z. Yu, SEDAN III, A Generalized Electronic Material Device Analysis Program, p.45, 1985.

J. Hammersley, Monte carlo methods, p.46, 2013.

S. Selberherr, Analysis and simulation of semiconductor devices, vol.46, 2012.

S. Jiann, J. Yuan, and . Liou, Semiconductor device physics and simulation. Springer Science & Business Media, vol.46, p.48, 2013.

F. Lévy, Physique et technologie des semiconducteurs. PPUR presses polytechniques, vol.46, p.110, 1995.

M. Joseph, Fundamentals of Semiconductor Physics. Anchor Academic Publishing (aap_verlag), 2015.

D. M. Caughey and R. E. Thomas, Carrier mobilities in silicon empirically related to doping and field, Proceedings of the IEEE, vol.55, issue.12, p.49, 1967.

M. Nawaz and A. Ahmad, A TCAD-based modeling of GaN/InGaN/Si solar cells, Semiconductor Science and Technology, vol.27, issue.3, p.51, 2012.

S. Wang, H. Liu, X. Song, Y. Guo, and Z. Yang, An analytical model of anisotropic low field electron mobility in wurtzite indium nitride, Applied Physics A, vol.114, issue.4, p.49, 2014.

S. Adachi, Refractive indices of III-V compounds : Key properties of InGaAsP relevant to device design, Journal of Applied Physics, vol.53, issue.8, p.50, 1982.

O. Brandt, H. Wünsche, H. Yang, R. Klann, J. R. Müllhäuser et al., Recombination dynamics in GaN, Journal of crystal growth, vol.189, p.51, 1998.
DOI : 10.1016/s0022-0248(98)00295-4

M. Razeghi and M. Henini, Optoelectronic Devices : III-nitrides. Gulf Professional Publishing, vol.51, p.52, 2004.

, Analysis and Simulation of Semiconductor Devices, p.51

J. Dziewior and W. Schmid, Auger coefficients for highly doped and highly excited silicon, Applied Physics Letters, vol.31, issue.5, p.52, 1977.
DOI : 10.1063/1.89694

B. Zhou, K. S. Butcher, X. Li, and T. L. Tansley, Abstracts of topical workshop on III-V Nitrides. TWN, p.53, 1995.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey et al., Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements, Applied Physics Letters, vol.71, issue.18, pp.2572-2574, 1997.

K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui et al., Minority carrier diffusion length in GaN : Dislocation density and doping concentration dependence, Applied Physics Letters, vol.86, issue.5, p.92, 2005.
DOI : 10.1063/1.1861116

URL : https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/5537/1/APL86-5.pdf

G. F. Brown, J. W. Ager, W. Walukiewicz, and J. Wu, Numerical simulations of novel InGaN solar cells, Photovoltaic Specialists Conference (PVSC), p.52, 2009.

. Bibliographie,

J. Wu, W. Walukiewicz, J. W. Yu, I. Ager, E. E. Haller et al., Small band gap bowing in InGaN alloys, Applied Physics Letters, vol.80, issue.25, p.54, 2002.

E. Sakalauskas, A. Tuna, H. Kraus, U. Bremers, C. Rossow et al., Dielectric function and bowing parameters of InGaN alloys. physica status solidi (b), vol.249, p.54, 2012.

G. Orsal, Y. E. Gmili, N. Fressengeas, J. Streque, R. Djerboub et al., Bandgap energy bowing parameter of strained and relaxed InGaN layers. Optical Materials Express, vol.4, p.54, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01170545

M. Moret, B. Gil, S. Ruffenach, O. Briot, C. Giesen et al., Optical, structural investigations and band-gap bowing parameter of GaInN alloys, Journal of Crystal Growth, vol.311, issue.10, p.54, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00390296

V. Yu-davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin et al., Gap of InN and In-Rich InxGa1-xN alloys (0.36< x< 1). physica status solidi (b), vol.230, p.55, 2002.

M. Farahmand, C. Garetto, E. Bellotti, K. F. Brennan, M. Goano et al., Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system : binaries and ternaries, IEEE Transactions on electron devices, vol.48, issue.3, p.55, 2001.

X. Zhang, X. Wang, H. Xiao, C. Yang, J. Ran et al., Simulation of In0. 65ga0. 35 N single-junction solar cell, Journal of Physics D : Applied Physics, vol.40, issue.23, p.95, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00300529

Y. Cherruault, Optimisation : méthodes locales et globales. Presses Universitaires de France-PUF, vol.58, p.59, 1999.

J. Culioli, , vol.59, p.63

E. Polak and G. Ribiere, Note sur la convergence de méthodes de directions conjuguées. Revue française d'informatique et de recherche opérationnelle, série rouge, vol.3, p.59, 1969.

R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients, The computer journal, vol.7, issue.2, p.59, 1964.

M. Bierlaire, Introduction à l'optimisation différentiable. PPUR presses polytechniques, p.62, 2006.

R. Battiti and F. Masulli, BFGS optimization for faster and automated supervised learning, International neural network conference, pp.757-760

. Springer, , p.60, 1990.

Z. Wang, I. M. Navon, X. Zou, F. X. Le, and . Dimet, A truncated Newton optimization algorithm in meteorology applications with analytic Hessian/vector products, Computational Optimization and Applications, vol.4, issue.3, p.60, 1995.

J. A. Nelder and R. Mead, A Simplex Method for Function Minimization, The Computer Journal, vol.7, issue.4, p.61, 1965.

C. Marcel and J. Alain, Chromatographie en phase, liquide : Théorie et méthodes de séparation. Techniques de l'ingénieur, Analyse et caractérisation, vol.2, p.61, 1455.

M. J. Powell, An efficient method for finding the minimum of a function of several variables without calculating derivatives, The Computer Journal, vol.7, issue.2, p.61, 1964.

J. Yang, Newton-conjugate-gradient methods for solitary wave computations, Journal of Computational Physics, vol.228, issue.18, p.61, 2009.

C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, Algorithm 778 : L-BFGS-B : Fortran subroutines for large-scale bound-constrained optimization

, ACM Transactions on Mathematical Software (TOMS), vol.23, issue.4, p.62, 1997.

. Bibliographie,

J. D. Michael and . Powell, A direct search optimization method that models the objective and constraint functions by linear interpolation, Advances in optimization and numerical analysis, p.62, 1994.

G. Stephen and . Nash, Newton-type minimization via the Lanczos method, SIAM Journal on Numerical Analysis, vol.21, issue.4, p.63, 1984.

D. Kraft, A software package for sequential quadratic programming

. Forschungsbericht-deutsche, Forschungs-und Versuchsanstalt fur Luft-und Raumfahrt, p.63, 1988.

S. Int, ATLAS User's Manual. 5, p.69, 2016.

, SciPy-SciPy

L. L. Wu, D. G. Zhao, D. S. Jiang, P. Chen, L. C. Le et al., Effects of thin heavily Mg-doped GaN capping layer on ohmic contact formation of p-type, GaN. Semiconductor Science and Technology, vol.28, issue.10, p.78, 2013.

W. K. Morrow, C. Lee, S. P. Denbaars, F. Ren, and S. J. , Pearton. Role of graphene interlayers in mitigating degradation of Ni/Au ohmic contact morphology on p-type GaN, Vacuum, vol.128, p.78, 2016.

O. Bonnaud, Physique des Solides, des Semiconducteurs et Dispositifs. Université de Rennes, vol.1, p.78, 2003.

W. Zheng, Y. Wu, H. Shiraiwa, M. T. Ramsbey, and T. Kamal, Memory device having high work function gate and method of erasing same, p.79, 2005.

S. Sheng and . Li, Semiconductor physical electronics, p.79, 2012.

M. Salmeron, S. Ferrer, M. Jazzar, and G. A. Somorjai, Pt (111), and Pt (997) surfaces, Photoelectron spectroscopy study of the electronic structure of Au and Ag overlayers on Pt (100), vol.28, p.81, 1983.

G. N. Derry and Z. , Work function of Pt (111), Physical Review B, vol.39, issue.3, p.1940, 1989.

D. Haridas, A. Chowdhuri, K. Sreenivas, and V. Gupta, Effect of thickness of platinum catalyst clusters on response of SnO 2 thin film sensor for LPG, Sensors and Actuators B : Chemical, vol.153, issue.1, p.81, 2011.

F. Gossenberger, T. Roman, K. Forster-tonigold, and A. Groß, Change of the work function of platinum electrodes induced by halide adsorption

, Beilstein Journal of Nanotechnology, vol.5, issue.1, pp.152-161, 1981.

X. Li, W. Cai, J. An, S. Kim, J. Nah et al., Large-area synthesis of high-quality and uniform graphene films on copper foils, science, vol.324, issue.5932, p.81, 2009.

Y. Yu, Y. Zhao, S. Ryu, L. E. Brus, S. Kwang et al., Tuning the graphene work function by electric field effect, Nano letters, vol.9, issue.10, p.81, 2009.

J. Jang, D. Kim, and T. Seong, Schottky barrier characteristics of Pt contacts to n-type InGaN, Journal of applied physics, vol.99, issue.7, p.88, 2006.

S. X. Li, K. M. Yu, J. Wu, R. E. Jones, W. Walukiewicz et al.,

H. Haller, W. J. Lu, and . Schaff, Fermi-level stabilization energy in group III nitrides, Physical Review B, vol.71, issue.16, p.88, 2005.

M. Mamor, Interface gap states and Schottky barrier inhomogeneity at metal/ntype GaN Schottky contacts, Journal of Physics : Condensed Matter, vol.21, issue.33, p.88, 2009.
DOI : 10.1088/0953-8984/21/33/335802

Y. Wei, Structural Properties of III-Nitride Semiconductors. Arizona State University, p.89, 2014.

S. Hamady, Numerical simulation of InGaN Schottky solar cell, Abdoulwahab Adaine, and Nicolas Fressengeas, vol.41, p.89, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01256060

E. Feltin, S. Dalmasso, P. De-mierry, B. Beaumont, H. Lahrèche et al., Green InGaN light-emitting diodes grown on silicon (111) by metalorganic vapor phase epitaxy, Japanese Journal of Applied Physics, vol.40, issue.7B, p.90, 2001.

. Bibliographie,

A. Cuevas, M. J. Kerr, C. Samundsett, F. Ferrazza, and G. Coletti, Millisecond minority carrier lifetimes in n-type multicrystalline silicon, Applied Physics Letters, vol.81, issue.26, p.92, 2002.

S. N. Zhifang-fan, W. Mohammad, Ö. Kim, A. E. Aktas, H. Botchkarev et al., Very low resistance multilayer Ohmic contact to n-GaN, Applied Physics Letters, vol.68, issue.12, p.134, 1996.

A. Ghani-bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, InGaN solar cells : present state of the art and important challenges, IEEE Journal of photovoltaics, vol.2, issue.3, p.95, 2012.

C. C. Yang, J. Sheu, X. Liang, M. Huang, M. L. Lee et al., Enhancement of the conversion efficiency of GaN-based photovoltaic devices with AlGaN/InGaN absorption layers, Applied Physics Letters, vol.97, issue.2, p.96, 2010.

B. P. Chloe-am-fabien, J. J. Gunning, E. A. Merola, W. A. Clinton, and . Doolittle, Large-area III-nitride double-heterojunction solar cells with record-high in-content InGaN absorbing layers, Photovoltaic Specialist Conference (PVSC), p.100, 2015.

T. Mehrtens, M. Schowalter, D. Tytko, P. Choi, D. Raabe et al., Measurement of the indium concentration in high indium content InGaN layers by scanning transmission electron microscopy and atom probe tomography, Applied Physics Letters, vol.102, issue.13, p.132112, 2013.

L. Chernyak, A. Osinsky, V. Fuflyigin, and E. F. Schubert, Electron beam-induced increase of electron diffusion length in p-type GaN and AlGaN/GaN superlattices, Applied Physics Letters, vol.77, issue.6, p.106, 2000.

A. Mcevoy, L. Castaner, and T. Markvart, Solar cells : materials, manufacture and operation, p.111, 2012.

N. Grandjean and J. Massies, Les nitrures d'éléments III : des semiconducteurs III-V singuliers ? Images de la physique-CNRS, p.111, 2001.

. Bibliographie,

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King et al., III-V multijunction solar cells for concentrating photovoltaics, Energy & Environmental Science, vol.2, issue.2, p.112, 2009.

G. Sarlos, P. Haldi, and P. Verstraete, Systèmes énergétiques : Offre et demande d'énergie : méthodes d'analyse, vol.21, p.113, 2003.

S. P. Bremner, M. Y. Levy, and C. B. Honsberg, Analysis of tandem solar cell efficiencies under AM1. 5g spectrum using a rapid flux calculation method, Progress in photovoltaics : Research and Applications, vol.16, p.115, 2008.

D. J. Friedman, Progress and challenges for next-generation high-efficiency multijunction solar cells. Current Opinion in Solid State and Materials Science, vol.14, p.115, 2010.

B. Garcia, Indium gallium nitride multijunction solar cell simulation using silvaco atlas. PhD thesis, Monterey California. Naval Postgraduate School, p.116, 2007.

J. Chang, Y. Shih-hsun-yen, B. Chang, Y. Liou, and . Kuo, Numerical investigation of high-efficiency InGaN-based multijunction solar cell, IEEE Transactions on Electron Devices, vol.60, issue.12, pp.4140-4145, 2013.

A. Mesrane, A. Mahrane, F. Rahmoune, and A. Oulebsir, Theoretical Study and Simulations of an InGaN Dual-Junction Solar Cell, Journal of Electronic Materials, vol.116, p.122, 2016.

E. O. Kane, Zener tunneling in semiconductors, Journal of Physics and Chemistry of Solids, vol.12, issue.2, pp.181-188, 0117.

E. O. Kane, Theory of Tunneling, Journal of Applied Physics, vol.32, issue.1, pp.83-91, 0117.

A. Schenk, Rigorous theory and simplified model of the band-to-band tunneling in silicon, Solid-State Electronics, vol.36, issue.1, pp.19-34, 0117.

C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu et al., Determination of the critical layer thickness in the InGaN/GaN heterostructures, Applied Physics Letters, vol.75, p.126, 1999.

. Bibliographie,

M. J. Reed, N. A. El-masry, C. A. Parker, J. C. Roberts, and S. M. Bedair, Critical layer thickness determination of GaN/InGaN/GaN double heterostructures, Applied Physics Letters, vol.77, issue.25, p.126, 2000.

C. Sun, S. Chu, S. Tai, S. Keller, U. K. Mishra et al., Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride, Applied Physics Letters, vol.77, issue.15, p.128, 2000.

H. Singh-nalwa, Silicon-based material and devices, two-volume set : materials and processing, Properties and Devices, vol.1, p.128, 2001.

H. Fritzsche, Amorphous Silicon and Related Materials, World Scientific, vol.1, issue.2, p.129, 1989.
DOI : 10.1142/0618

M. E. Lin, Z. Ma, Z. Huang, L. H. Fo-fan, H. Allen et al., Low resistance ohmic contacts on wide band-gap GaN, Applied Physics Letters, vol.64, issue.8, p.134, 1994.
DOI : 10.1063/1.111961

J. Kim, J. Lee, J. W. Lee, H. E. Shin, Y. J. Park et al., Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment

, Applied Physics Letters, vol.73, issue.20, pp.2953-2955, 1998.

J. Ho, C. Jong, C. Chien, C. Chiu, C. Huang et al., Low-resistance ohmic contacts to p-type GaN, Applied Physics Letters, vol.74, issue.9, p.134, 1999.

J. O. Song, J. Ha, and T. Seong, Ohmic-contact technology for GaN-based light-emitting diodes : Role of p-type contact, IEEE transactions on electron devices, vol.57, issue.1, p.134, 2010.

H. K. Cho, T. Hossain, J. W. Bae, and I. Adesida, Solid-state electronics, vol.49, issue.5, pp.774-778, 2005.

J. Jang, S. Sohn, D. Kim, and T. Seong, Formation of low-resistance transparent Ni/Au ohmic contacts to a polarization field-induced pInGaN/GaN superlattice. Semiconductor science and technology, vol.21, p.37, 2006.

Y. W. Kwon, I. C. Ju, S. K. Kim, Y. S. Choi, M. H. Kim et al., Nano-Scaled Pt/Ag/Ni/Au Contacts on p-type GaN for Low BIBLIOGRAPHIE Contact Resistance and High Reflectivity, Journal of nanoscience and nanotechnology, vol.11, issue.7, p.134, 2011.

, Liste des publications

A. Adaine, S. Hamady, and N. Fressengeas, Effects of structural defects and polarization charges in InGaN-based double-junction solar cell, Superlattices and Microstructures, vol.107, pp.267-277, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01513102

A. Adaine, S. Hamady, and N. Fressengeas, Simulation study of a new InGaN p-layer free Schottky based solar cell, Superlattices and Microstructures, vol.96, pp.121-133, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01318037

S. Hamady, Abdoulwahab Adaine, Nicolas Fressengeas. Numerical simulation of InGaN Schottky solar cell, Materials Science in Semiconductor Processing, vol.41, pp.219-225, 2016.

A. Sidi-ould-saad-hamady, N. Adaine, and . Fressengeas, Cellules solaires en couches minces semi-conductrices en nitrure d'indium et de gallium (InGaN) : potentiel, limites et perspectives. Workshop Matériaux pour l'Optique et Photonique, 2017.

A. Adaine and S. Hamady, Nicolas Fressengeas. New Optimized InGaN Metal-IN Solar Cell. China France Second Workshop on Advanced Materials, 2016.

A. Adaine, S. Hamady, and N. Fressengeas, Comparative study of of PN, PIN and new Schottky based InGaN thin films solar cells, Nanotech France, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01326148