. .. Rev,

. .. , Homogenization of a cubic inclusion composite, p.86

. .. Nonlinear-magnetostrictive-analysis, , p.91

.. .. Conclusion,

W. C. Röntgen and J. Schneider, Ueber die Compressibilität des Wassers, Annalen der Physik, vol.269, issue.4, pp.644-660, 1888.

P. Curie, Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique, Journal de Physique Théorique et Appliquée, vol.3, issue.1, pp.393-415, 1894.

S. Thomas, N. Kalarikkal, A. M. Stephan, and B. Raneesh, Advanced Nanomaterials: Synthesis, Properties, and Applications, 2014.

S. Zhou, J. Wang, X. Chang, S. Wang, B. Qian et al., Magnetoelectricity coupled exchange bias in BaMnF4, Scientific Reports, vol.5, p.18392, 2016.

M. Eibschütz, H. J. Guggenheim-;-m-=-mn, F. Co, and ). Ni, Antiferromagnetic-piezoelectric crystals: BaMe4, Solid State Communications, vol.6, pp.737-739, 1968.

C. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, Journal of Applied Physics, vol.103, p.31101, 2008.

J. P. Esq, On the effects of magnetism upon the dimensions of iron and steel bars, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.30, pp.76-87, 1847.

Y. Kikuchi, Magnetostrictive materials and applications, IEEE Transactions on Magnetics, vol.4, pp.107-117, 1968.

D. C. Jiles, Theory of the magnetomechanical effect, Journal of Physics D: Applied Physics, vol.28, pp.1537-1546, 1995.

A. E. Clark, B. F. Desavage, and R. Bozorth, Anomalous Thermal Expansion and Magnetostriction of Single-Crystal Dysprosium, Physical Review, vol.138, pp.216-224, 1965.

S. Legvold, J. Alstad, and J. Rhyne, Giant Magnetostriction in Dysprosium and Holmium Single Crystals, Physical Review Letters, vol.10, pp.509-511, 1963.

A. E. Clark and M. Wun-fogle, Modern magnetostrictive materials: classical and nonclassical alloys, Smart Structures and Materials 2002: Active Materials: Behavior and Mechanics, vol.4699, pp.421-437, 2002.

A. Khachaturyan and D. Viehland, Structurally Heterogeneous Model of Extrinsic Magnetostriction for Fe-Ga and Similar Magnetic Alloys: Part I. Decomposition and Confined Displacive Transformation, Metallurgical and Materials Transactions A, vol.38, pp.2308-2316, 2007.

C. Mudivarthi, M. Laver, J. Cullen, A. B. Flatau, and M. Wuttig, Origin of magnetostriction in Fe-Ga, Journal of Applied Physics, vol.107, pp.9-957, 2010.

S. Karunanidhi and M. Singaperumal, Design, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valve, Sensors and Actuators A: Physical, vol.157, pp.185-197, 2010.

J. Daw, B. Tittmann, B. Reinhardt, G. Kohse, P. Ramuhalli et al.,

J. Chien, J. Villard, J. Palmer, and . Rempe, Irradiation testing of ultrasonic transducers, 2013 3rd International Conference on Advancements in Nuclear Instrumentation, pp.1-7, 2013.

E. Hristoforou, Magnetostrictive delay lines: engineering theory and sensing applications, Measurement Science and Technology, vol.14, pp.15-47, 2003.

G. Gautschi, Piezoelectric Sensorics: Force Strain Pressure Acceleration and Acoustic Emission Sensors Materials and Amplifiers, 2002.

J. Curie and P. Curie, Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées, Bulletin de Minéralogie, vol.3, issue.4, pp.90-93, 1880.

X. Mininger, E. Lefeuvre, M. Gabsi, C. Richard, and D. Guyomar, Semiactive and active piezoelectric vibration controls for switched reluctance machine, IEEE Transactions on Energy conversion, vol.23, issue.1, pp.78-85, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00352286

B. ?lik, A. Koyuncuo?lu, H. Sukas, and . Külah, Thin film piezoelectric acoustic transducer for fully implantable cochlear implants, Sensors and Actuators A: Physical, vol.280, pp.38-46, 2018.

M. Zhou, Y. Ruan, W. Liu, S. Huang, and X. Fu, A bio-inspired piezoelectric motor with simple structured asymmetric stator, Smart Materials and Structures, vol.23, p.45003, 2014.

M. Han, H. Wang, Y. Yang, C. Liang, W. Bai et al., Three-dimensional piezoelectric polymer microsystems for vi-Bibliography brational energy harvesting, robotic interfaces and biomedical implants, Nature Electronics, vol.2, p.26, 2019.

R. E. Newnham, D. P. Skinner, and L. E. Cross, Connectivity and piezoelectricpyroelectric composites, Materials Research Bulletin, vol.13, pp.525-536, 1978.

Y. Wang, J. Hu, Y. Lin, and C. Nan, Multiferroic magnetoelectric composite nanostructures, NPG Asia Materials, vol.2, pp.61-68, 2010.

S. Priya, R. Islam, S. Dong, and D. Viehland, Recent advancements in magnetoelectric particulate and laminate composites, Journal of Electroceramics, vol.19, pp.149-166, 2007.

Y. Liu, X. Ruan, B. Zhu, S. Chen, Z. Lu et al., CoFe2o4/BaTiO3 Composites via Spark Plasma Sintering with Enhanced Magnetoelectric Coupling and Excellent Anisotropy, Journal of the American Ceramic Society, vol.94, issue.6, pp.1695-1697, 2011.

H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-ardabili et al., Multiferroic BaTiO3-CoFe2o4 Nanostructures, vol.303, pp.661-663, 2004.

C. W. Nan, M. Li, and J. H. Huang, Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and ferroelectric polymers, Physical Review B, vol.63, p.144415, 2001.

Y. Li, Z. Wang, J. Yao, T. Yang, Z. Wang et al., Magnetoelectric quasi-(0-3) nanocomposite heterostructures, Nature Communications, vol.6, p.6680, 2015.

K. Lefki and G. J. Dormans, Measurement of piezoelectric coefficients of ferroelectric thin films, Journal of Applied Physics, vol.76, pp.1764-1767, 1994.

C. Nan, Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases, Physical Review B, vol.50, pp.6082-6088, 1994.

K. Malleron, A. Gensbittel, H. Talleb, and Z. Ren, Etude expérimentale d'un transducteur magnétoélectrique pour les besoins de la télé-alimentation de capteurs biomédicaux implantés, Journées d'Etude sur la TéléSANté, 2017.

J. Zhai, S. Dong, Z. Xing, J. Li, and D. Viehland, Giant magnetoelectric effect in Metglas/polyvinylidene-fluoride laminates, Applied Physics Letters, vol.89, issue.8, p.83507, 2006.

M. Batty, K. W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani et al., Smart cities of the future, The European Physical Journal Special Topics, vol.214, pp.481-518, 2012.

D. Mclaren and J. Agyeman, Sharing Cities: A Case for Truly Smart and Sustainable Cities, Google-Books-ID: KhvLCgAAQBAJ, 2015.

L. Columbus, Roundup Of Internet Of Things Forecasts And Market Estimates, 2016.

E. Lefeuvre, A. Badel, A. Brenes, S. Seok, and C. Yoo, Power and frequency bandwidth improvement of piezoelectric energy harvesting devices using phaseshifted synchronous electric charge extraction interface circuit, Journal of Intelligent Material Systems and Structures, vol.28, issue.20, pp.2988-2995, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01901526

R. Xie, N. Ishijima, H. Sugime, and S. Noda, Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process, Scientific reports, vol.9, issue.1, pp.1-7, 2019.

M. D. Soares, J. Ferreira, J. Simões, R. Pascoal, J. Torrão et al., Magnetic levitation-based electromagnetic energy harvesting: a semianalytical non-linear model for energy transduction, Scientific reports, vol.6, pp.18579-18579, 2016.

S. P. Beeby, M. J. Tudor, and N. M. White, Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, vol.17, pp.175-195, 2006.

J. A. Paradiso and T. Starner, Energy scavenging for mobile and wireless electronics, IEEE Pervasive Computing, vol.4, pp.18-27, 2005.

S. Priya, J. Ryu, C. Park, J. Oliver, J. Choi et al., Piezoelectric and Magnetoelectric Thick Films for Fabricating Power Sources in Wireless Sensor Nodes, Sensors, vol.9, pp.6362-6384, 2009.

R. C. Kambale, W. Yoon, D. Park, J. Choi, C. Ahn et al., Magnetoelectric properties and magnetomechanical energy harvesting from stray vibration and electromagnetic wave by Pb(Mg1/3nb2/3)O3-Pb(Zr,Ti)O3 single crystal/Ni cantilever, Journal of Applied Physics, vol.113, p.204108, 2013.

P. Martins and S. Lanceros-méndez, Polymer-Based Magnetoelectric Materials, Advanced Functional Materials, vol.23, issue.27, pp.3371-3385, 2013.

G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Y. I. Bokhan et al., Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides, Physical Review B, vol.64, p.214408, 2001.

P. Li, Y. Wen, C. Jia, and X. Li, A MAGNETOELECTRIC ENERGY HAR-VESTER AND MANAGEMENT CIRCUIT, 2009.

Y. Zhou, D. J. Apo, M. Sanghadasa, M. Bichurin, V. M. Petrov et al., 7 -Magnetoelectric energy harvester, Woodhead Publishing Series in Electronic and Optical Materials, pp.161-207, 2015.

M. Kumari, C. Prakash, and R. Chatterjee, Room temperature large self-biased magnetoelectric effect in non-lead based piezoelectric and magnetostrictive (0-3) particulate composite system, Journal of Magnetism and Magnetic Materials, vol.429, pp.60-64, 2017.

Y. Cheng, B. Peng, Z. Hu, Z. Zhou, and M. Liu, Recent development and status of magnetoelectric materials and devices, Physics Letters A, vol.382, pp.3018-3025, 2018.

Y. Hui, T. X. Nan, N. X. Sun, and M. Rinaldi, MEMS resonant magnetic field sensor based on an AlN/FeGaB bilayer nano-plate resonator, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), pp.721-724, 2013.

T. Nan, Y. Hui, M. Rinaldi, and N. X. Sun, Self-Biased 215mhz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection, Scientific Reports, vol.3, p.1985, 2013.

R. Guduru, P. Liang, M. Yousef, J. Horstmyer, and S. Khizroev, Mapping the Brain's electric fields with Magnetoelectric nanoparticles, Bioelectronic Medicine, vol.4, p.10, 2018.

D. Lee, S. Kim, Y. K. Yoo, J. Han, D. Chun et al.,

J. Kim, K. Kim, T. S. Hwang, W. Kim, H. Jo et al., Ultra-sensitive magnetoelectric microcantilever at a low frequency, Applied Physics Letters, vol.101, p.182902, 2012.

V. Röbisch, S. Salzer, N. O. Urs, J. Reermann, E. Yarar et al., Pushing the detection limit of thin film magnetoelectric heterostructures, Journal of Materials Research, vol.32, pp.1009-1019, 2017.

A. S. Tatarenko, G. Srinivasan, and M. I. Bichurin, Magnetoelectric microwave phase shifter, Applied Physics Letters, vol.88, p.183507, 2006.

A. S. Tatarenko, D. V. Murthy, and G. Srinivasan, Hexagonal ferritepiezoelectric composites for dual magnetic and electric field tunable 8-25 GHz microstripline resonators and phase shifters, Microwave and Optical Technology Letters, vol.54, issue.5, pp.1215-1218, 2012.

J. Lou, D. Reed, M. Liu, and N. X. Sun, Electrostatically tunable magnetoelectric inductors with large inductance tunability, Applied Physics Letters, vol.94, p.112508, 2009.

W. Voigt, L. Der-kristallphysik, and . Wiesbaden, ANSI/IEEE Std 176-1987, p.1, 1966.

D. C. Jiles and D. L. Atherton, Theory of ferromagnetic hysteresis, Journal of Magnetism and Magnetic Materials, vol.61, pp.48-60, 1986.

J. Kim and E. Jung, Finite element analysis for acoustic characteristics of a magnetostrictive transducer, Smart Materials and Structures, vol.14, pp.1273-1280, 2005.

W. D. Armstrong, An incremental theory of magneto-elastic hysteresis in pseudocubic ferro-magnetostrictive alloys, Journal of Magnetism and Magnetic Materials, vol.263, pp.208-218, 2003.

L. Daniel, An Analytical Model for the Effect of Multiaxial Stress on the Magnetic Susceptibility of Ferromagnetic Materials, IEEE Transactions on Magnetics, vol.49, pp.2037-2040, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00931729

P. G. Evans and M. J. Dapino, Efficient magnetic hysteresis model for field and stress application in magnetostrictive Galfenol, Journal of Applied Physics, vol.107, p.63906, 2010.

J. Íñiguez, First-Principles Approach to Lattice-Mediated Magnetoelectric Effects, Physical Review Letters, vol.101, p.117201, 2008.

E. Bousquet, N. A. Spaldin, and K. T. Delaney, Unexpectedly Large Electronic Contribution to Linear Magnetoelectricity, Physical Review Letters, vol.106, p.107202, 2011.

S. Prosandeev, I. A. Kornev, and L. Bellaiche, Magnetoelectricity in BiFeO 3 films: First-principles-based computations and phenomenology, Physical Review B, vol.83, p.20102, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02277386

W. Ren and L. Bellaiche, Size effects in multiferroic BiFeO 3 nanodots: A firstprinciples-based study, Physical Review B, vol.82, p.113403, 2010.

S. Butterworth and F. D. Smith, The equivalent circuit of the magnetostriction oscillator, Proceedings of the Physical Society, vol.43, pp.166-185, 1931.

G. Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides, Physical Review B, vol.65, p.134402, 2002.

K. Mori and M. Wuttig, Magnetoelectric coupling in Terfenol

D. Composites, Applied Physics Letters, vol.81, pp.100-101, 2002.

M. Avellaneda and G. Harshé, Magnetoelectric Effect in Piezoelectric/Magnetostrictive Multilayer (2-2) Composites, Journal of Intelligent Material Systems and Structures, vol.5, pp.501-513, 1994.

I. A. Osaretin and R. G. Rojas, Theoretical model for the magnetoelectric effect in magnetostrictive/piezoelectric composites, Physical Review B, vol.82, p.174415, 2010.

S. Dong and J. Zhai, Equivalent circuit method for static and dynamic analysis of magnetoelectric laminated composites, Chinese Science Bulletin, vol.53, pp.2113-2123, 2008.

D. A. Filippov, M. I. Bichurin, C. W. Nan, and J. M. Liu, Magnetoelectric effect in hybrid magnetostrictive-piezoelectric composites in the electromechanical resonance region, Journal of Applied Physics, vol.97, p.113910, 2005.

M. Bichurin and V. Petrov, Magnetoelectric Effect in Electromechanical Resonance Region, Modeling of Magnetoelectric Effects in Composites, pp.57-73, 2014.

Y. Wang, D. Hasanyan, M. Li, J. Gao, J. Li et al., Theoretical model for geometry-dependent magnetoelectric effect in magnetostrictive/piezoelectric composites, Journal of Applied Physics, vol.111, p.124513, 2012.

H. Zhou, X. Ou, Y. Xiao, S. Qu, and H. Wu, An analytical nonlinear magnetoelectric coupling model of laminated composites under combined pre-stress and magnetic bias loadings, Smart Materials and Structures, vol.22, p.35018, 2013.

G. Liu, C. Zhang, W. Chen, and S. Dong, Eddy-current effect on resonant magnetoelectric coupling in magnetostrictive-piezoelectric laminated composites, Journal of Applied Physics, vol.114, p.27010, 2013.

D. Davino, A. Giustiniani, C. Visone, and W. Zamboni, Stress-Induced Eddy Currents in Magnetostrictive Energy Harvesting Devices, IEEE Transactions on Magnetics, vol.48, pp.18-25, 2012.

H. Talleb and Z. Ren, Finite element modeling of magnetoelectric laminate composites in considering nonlinear and load effects for energy harvesting, Journal of Alloys and Compounds, vol.615, pp.65-74, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01025058

T. T. Nguyen, Modélisation par éléments finis de matériaux composites magnétoélectriques, 2011.

T. T. Nguyen, X. Mininger, F. Bouillault, and L. Daniel, Finite element harmonic modeling of magnetoelectric effect, IEEE Transactions on Magnetics, vol.47, issue.5, pp.1142-1145, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00711567

T. T. Nguyen, F. Bouillault, L. Daniel, and X. Mininger, Finite element modeling of magnetic field sensors based on nonlinear magnetoelectric effect, Journal of Applied Physics, vol.109, issue.8, p.84904, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00711554

K. Malleron, H. Talleb, A. Gensbittel, and Z. Ren, Finite-Element Modeling of Magnetoelectric Energy Transducers With Interdigitated Electrodes, IEEE Transactions on Magnetics, vol.53, pp.1-4, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01513748

N. Galopin, X. Mininger, F. Frederic, and L. Daniel, Finite Element Modeling of Magnetoelectric Sensors, IEEE Transactions on Magnetics, vol.44, pp.834-837, 2008.

V. Piefort, Finite Element Modelling of Piezoelectric Active Structures, p.154

A. Belahcen, Magnetoelasticity, magnetic forces and magnetostriction in electrical machines, 2004.

K. Azoum, Contribution à la modélisation numérique de phénomènes magnétoélastiques : étude de dispositifs à base de matériaux magnétostrictifs. thesis, vol.11, 2005.

N. Galopin, Modélisation et caractérisation de matériaux actifs pour la conception de dispositifs magnéto-électriques, 2007.

T. Ueno and T. Higuchi, Magnetic sensor for high temperature using a laminate composite of magnetostrictive material and piezoelectric material, Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, vol.5761, pp.156-163, 2005.

H. Talleb, A. Gensbittel, and Z. Ren, Multiphysics modeling of a magnetoelectric composite Rosen-type device, Composite Structures, vol.137, pp.1-8, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01229758

H. Talleb, A. Gensbittel, and Z. Ren, Multiphysics modeling of multiferroic artificial materials by the finite element method, The European Physical Journal Applied Physics, vol.73, p.30901, 2016.

M. J. Dapino, R. C. Smith, L. E. Faidley, and A. B. Flatau, A Coupled Structural-Magnetic Strain and Stress Model for Magnetostrictive Transducers, Journal of Intelligent Material Systems and Structures, vol.11, pp.135-152, 2000.

G. Yang, Contribution to modelling of magnetoelectric composites for energy harvesting. Theses, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01630261

Q. H. Jiang, Z. J. Shen, J. P. Zhou, Z. Shi, and C. Nan, Magnetoelectric Bibliography composites of nickel ferrite and lead zirconnate titanate prepared by spark plasma sintering, Journal of the European Ceramic Society, vol.27, pp.279-284, 2007.

A. Aubert, V. Loyau, F. Mazaleyrat, and M. Lobue, Enhancement of the Magnetoelectric Effect in Multiferroic CoFe 2 O 4 /PZT Bilayer by Induced Uniaxial Magnetic Anisotropy, IEEE Transactions on Magnetics, vol.53, pp.1-5, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01636268

. Fu-sheng, J. Hsiao, Y. Chao, and . Huang, 3d finite element analysis and experiment on the piezoelectric ultrasonic transducer motion, 2009 International Conference on Mechatronics and Automation, pp.158-163, 2009.

D. Braess and M. Kaltenbacher, Efficient 3d-finite element formulation for thin mechanical and piezoelectric structures, INTERNATIONAL JOURNAL FOR NU-MERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng, vol.06, pp.1-6, 2000.

M. Schinnerl, M. Kaltenbacher, U. Langer, R. Lerch, and J. Schöberl, A Survey in Mathematics for Industry An efficient method for the numerical simulation of magneto-mechanical sensors and actuators, European Journal of Applied Mathematics, vol.18, pp.233-271, 2007.

P. G. Evans and M. J. Dapino, Dynamic Model for 3-D Magnetostrictive Transducers, IEEE Transactions on Magnetics, vol.47, pp.221-230, 2011.

, The Finite Element Method in Electromagnetics

O. Bíró, Edge element formulations of eddy current problems, Computer Methods in Applied Mechanics and Engineering, vol.169, pp.391-405, 1999.

Z. Qin, Finite Element Modeling and PGD Based Model Reduction for Piezoelectric & Magnetostrictive Materials, 2016.

Z. Qin, H. Talleb, J. Duquesne, M. Marangolo, and Z. Ren, Finite-element modeling of thermoelastic attenuation in piezoelectric surface acoustic wave devices, IEEE Transactions on Magnetics, vol.51, issue.3, pp.1-4, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01149020

M. J. Dapino and S. Chakrabarti, Modeling of 3d Magnetostrictive Systems with Application to Galfenol and Terfenol-D Actuators, 2013.

S. Chakrabarti and M. J. Dapino, Nonlinear finite element model for 3d Galfenol systems, Smart Materials and Structures, vol.20, p.105034, 2011.

H. Tari, J. J. Scheidler, and M. J. Dapino, Robust solution procedure for the discrete energy-averaged model on the calculation of 3d hysteretic magnetization and magnetostriction of iron-gallium alloys, Journal of Magnetism and Magnetic Materials, vol.384, pp.266-275, 2015.

A. Bossavit, Computational Electromagnetism: Variational Formulations, Com-Bibliography plementarity, Edge Elements, 1998.

A. Bossavit, Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism, IEE Proceedings A -Physical Science, Measurement and Instrumentation, Management and Education -Reviews, vol.135, pp.493-500, 1988.

S. Chakrabarti and M. J. Dapino, Fully coupled discrete energy-averaged model for Terfenol-D, Journal of Applied Physics, vol.111, p.54505, 2012.

G. Nader, E. C. Silva, and J. C. Adamowski, Determination of piezoelectric transducer damping by using experimental and finite element simulations, Smart Structures and Materials 2003: Damping and Isolation, vol.5052, pp.116-128, 2003.

L. Wang, Z. Du, C. Fan, L. Xu, H. Zhang et al., Effect of load resistance on magnetoelectric properties in FeGa/BaTiO 3/FeGa laminate composites, Journal of Alloys and Compounds, vol.509, issue.30, pp.7870-7873, 2011.

R. Myers, R. A. Islam, M. Karmarkar, and S. Priya, Magnetoelectric laminate composite based tachometer for harsh environment applications, Applied Physics Letters, vol.91, p.122904, 2007.

Y. Zong, T. Zheng, P. Martins, S. Lanceros-mendez, Z. Yue et al., Cellulose-based magnetoelectric composites, Nature Communications, vol.8, 2017.

J. Wen, J. Zhang, and Y. Gao, A coupling finite element model for analysis the nonlinear dynamic magnetoelectric response of tri-layer laminate composites, Composite Structures, vol.166, pp.163-176, 2017.

X. Mininger, N. Galopin, Y. Dennemont, and F. Bouillault, 3d finite element model for magnetoelectric sensors, The European Physical Journal -Applied Physics, vol.52, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00414623

H. Talleb and Z. Ren, Finite-element modeling of a magnetoelectric energy transducer including the load effect, IEEE Transactions on Magnetics, vol.51, issue.3, pp.1-5, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00960967

S. S. Vadla, A. R. Kulkarni, and V. Narayanan, Magnetoelectric coupling in 0.5pb(Ni1/3nb2/3)O3-0.35pbtio3-0.15pbzro3 and CoFe2o4 based particulate composites, Scripta Materialia, vol.112, pp.140-143, 2016.

S. Schmauder and I. Schäfer, Multiscale Materials Modeling: Approaches to Full Multiscaling, Google-Books-ID: FOk5DQAAQBAJ, 2016.

J. Y. Li and M. L. Dunn, Micromechanics of Magnetoelectroelastic Composite Bibliography Materials: Average Fields and Effective Behavior, Journal of Intelligent Material Systems and Structures, vol.9, pp.404-416, 1998.

R. Corcolle, L. Daniel, and F. Bouillault, Generic formalism for homogenization of coupled behavior: Application to magnetoelectroelastic behavior, Physical Review B, vol.78, p.214110, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00354428

J. Lee, J. G. Boyd, and D. C. Lagoudas, Effective properties of three-phase electromagneto-elastic composites, International Journal of Engineering Science, vol.43, pp.790-825, 2005.

V. D. Nguyen, E. Béchet, C. Geuzaine, and L. Noels, Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation, Computational Materials Science, vol.55, pp.390-406, 2012.

R. Corcolle, L. Daniel, and F. Bouillault, Optimal Design of Magnetostrictive Composites: An Analytical Approach, IEEE Transactions on Magnetics, vol.44, pp.17-23, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00352283

Y. Zhou and F. G. Shin, Modeling of magnetostriction in particulate composite materials, IEEE Transactions on Magnetics, vol.41, pp.2071-2076, 2005.