Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

Schrödinger equation on noncompact symmetric spaces

Abstract : We consider the Schrödinger equation on Riemannian symmetric spaces of noncompact type. Previous studies in rank one included sharp-in-time pointwise estimates for the Schrödinger kernel, dispersive properties, Strichartz inequalities for a large family of admissible pairs, and global well-posedness and scattering, both for small initial data. In this paper we establish analogous results in the higher rank case. The kernel estimates, which is our main result, are obtained by combining a subordination formula, an improved Hadamard parametrix for the wave equation, and a barycentric decomposition initially developed for the wave equation, which allows us to overcome a well-known problem, namely the fact that the Plancherel density is not always a differential symbol.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-03187413
Contributeur : Hong-Wei Zhang Connectez-vous pour contacter le contributeur
Soumis le : mardi 28 septembre 2021 - 15:36:47
Dernière modification le : mercredi 3 novembre 2021 - 14:53:28

Fichier

AMPVZ2021.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-03187413, version 2

Collections

Citation

Jean-Philippe Anker, Stefano Meda, Vittoria Pierfelice, Maria Vallarino, Hong-Wei Zhang. Schrödinger equation on noncompact symmetric spaces. 2021. ⟨hal-03187413v2⟩

Partager

Métriques

Consultations de la notice

25

Téléchargements de fichiers

26