Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Filling the gap between individual-based evolutionary models and Hamilton-Jacobi equations

Abstract : We consider a stochastic model for the evolution of a discrete population structured by a trait with values on a finite grid of the torus, and with mutation and selection. Traits are vertically inherited unless a mutation occurs, and influence the birth and death rates. We focus on a parameter scaling where population is large, individual mutations are small but not rare, and the grid mesh for the trait values is much smaller than the size of mutation steps. When considering the evolution of the population in a long time scale, the contribution of small sub-populations may strongly influence the dynamics. Our main result quantifies the asymptotic dynamics of sub-population sizes on a logarithmic scale. We establish that under the parameter scaling the logarithm of the stochastic population size process, conveniently normalized, converges to the unique viscosity solution of a Hamilton-Jacobi equation. The proof makes use of almost sure maximum principles and careful controls of the martingale parts.
Complete list of metadata
Contributor : Viet Chi Tran Connect in order to contact the contributor
Submitted on : Monday, May 2, 2022 - 11:38:17 AM
Last modification on : Saturday, June 25, 2022 - 3:29:59 AM


Files produced by the author(s)


  • HAL Id : hal-03656608, version 1



Nicolas Champagnat, Sylvie Méléard, Sepideh Mirrahimi, Viet-Chi Tran. Filling the gap between individual-based evolutionary models and Hamilton-Jacobi equations. 2022. ⟨hal-03656608v1⟩



Record views


Files downloads