Space Debris Trajectory Estimation during Atmospheric Reentry using Moving Horizon Estimator

Abstract : Space debris trajectory estimation during atmospheric reentry is a complex problem. For such an object the ballistic coefficient, which characterizes the response of the object to aerodynamics braking, is usually a highly nonlinear function of time. This function may be unknown if no a priori information on the object type is available. It is therefore interesting to design a robust estimator that would provide accurate estimates of the state of the tracked object, from available measurements. In this paper, a Moving Horizon Estimator (MHE) is implemented for trajectory estimation of a space debris during atmospheric reentry, from radar measurements. Its performances in terms of convergence and accuracy are analysed and compared with that of an Extended Kalman Filter (EKF), traditionally applied to this type of problem.
Document type :
Conference papers
Complete list of metadatas

https://hal-supelec.archives-ouvertes.fr/hal-00747358
Contributor : Josiane Dartron <>
Submitted on : Wednesday, October 31, 2012 - 10:32:25 AM
Last modification on : Tuesday, March 26, 2019 - 2:24:42 PM

Identifiers

Collections

Citation

Rata Suwantong, S. Bertrand, Didier Dumur, Dominique Beauvois. Space Debris Trajectory Estimation during Atmospheric Reentry using Moving Horizon Estimator. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Dec 2012, Maui, Hawaii, United States. ⟨10.1109/CDC.2012.6426215⟩. ⟨hal-00747358⟩

Share

Metrics

Record views

122