A risk-based simulation and multi-objective optimization framework for the integration of distributed renewable generation and storage

Abstract : We present a simulation and multi-objective optimization framework for the integration of renewable generators and storage devices into an electrical distribution network. The framework searches for the optimal size and location of the distributed renewable generation units (DG). Uncertainties in renewable resources availability, components failure and repair events, loads and grid power supply are incorporated. A Monte Carlo simulation – optimal power flow (MCS-OPF) computational model is used to generate scenarios of the uncertain variables and evaluate the network electric performance. As a response to the need of monitoring and controlling the risk associated to the performance of the optimal DG-integrated network, we introduce the conditional value-at-risk (CVaR) measure into the framework. Multi-objective optimization (MOO) is done with respect to the minimization of the expectations of the global cost (C g) and energy not supplied (ENS) combined with their respective CVaR values. The multi-objective optimization is performed by the fast non-dominated sorting genetic algorithm NSGA-II. For exemplification, the framework is applied to a distribution network derived from the IEEE 13 nodes test feeder. The results show that the MOO MCS-OPF framework is effective in finding an optimal DG-integrated network considering multiple sources of uncertainties. In addition, from the perspective of decision making, introducing the CVaR as a measure of risk enables the evaluation of trade-offs between optimal expected performances and risks.
Type de document :
Article dans une revue
Renewable and Sustainable Energy Reviews, Elsevier, 2014, 37, pp.778 - 793. 〈10.1016/j.rser.2014.05.046〉
Liste complète des métadonnées

Littérature citée [65 références]  Voir  Masquer  Télécharger

https://hal-supelec.archives-ouvertes.fr/hal-01090336
Contributeur : Yanfu Li <>
Soumis le : mercredi 3 décembre 2014 - 13:34:54
Dernière modification le : vendredi 1 juin 2018 - 13:27:36
Document(s) archivé(s) le : samedi 15 avril 2017 - 02:42:46

Fichier

paper_RSER.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Rodrigo Mena, Martin Hennebel, Yan-Fu Li, Carlos Ruiz, Enrico Zio. A risk-based simulation and multi-objective optimization framework for the integration of distributed renewable generation and storage. Renewable and Sustainable Energy Reviews, Elsevier, 2014, 37, pp.778 - 793. 〈10.1016/j.rser.2014.05.046〉. 〈hal-01090336〉

Partager

Métriques

Consultations de la notice

266

Téléchargements de fichiers

276